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1 Overview

1.1 Part 1: Overview
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Part 1: Overview

Earth’s Moon Io
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Callisto

The four Galilean
moons of Jupiter

Saturn’s moon Titan

Neptune’s moon Triton

1.2 Size comparison
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Size comparison
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2 (No) atmospheres on large moons

2.1 Part 2: (No) atmospheres on large moons
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Part 2: (No) atmospheres on large moons

Acknowledgement: This part is based on a presentation by
Nick Hoekzema.

2.2 Erosion of atmospheres
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Erosion of atmospheres

1. Thermal escape (escape of exospheric molecules)

2. Hydrodynamic outflow (“planetary wind”)

3. Chemical escape (ultra violet light)

4. Sputtering (solar wind, ions in magnetospheres)

=⇒ Mainly by processes 3. and 4., Ganymede and Callisto
could have lost at most 1 bar of an atmosphere since
the formation of the solar system.

=⇒ If they once had at least an atmosphere like Titan
Today (1.5 bar), it should still persist substantially.

2.3 Sputtering by BIG particles: comets and
asteroids
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Sputtering by BIG particles: comets and
asteroids

. . . usually called impact erosion.

• Important during the late heavy bombardment.

• Slow impacts deliver, fast impacts erode atmospheres;
the critical velocity depends on the escape velocity and
is about 12 km/s for a large moon.

Average impact velocity of short period comets:

Titan Callisto Ganymede
11 km/s 16 km/s 20 km/s

2.4 Impact erosion or delivery?
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Impact erosion or delivery?

Predictions from comparison of critical velocities with aver-
age impact velocities of short period comets:

• Impact erosion on Mercury, the Moon, and the Galilean
satellites.

• Impact delivery on Venus, Earth, Titan, and Pluto.

• Mars is on the edge.

Looks very appealing, but open questions remain.

3 Surface structures of Galilean Satel-
lites

3.1 Part 3: Surface structures of Galilean
Satellites
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Part 3: Surface structures of Galilean
Satellites

Acknowledgement: This part benefited from a review man-
uscript by Lars Reuen.

3.2 Io, the vulcanic world
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Io, the vulcanic world

Ra Patera

1979 (Voyager)

1996 (Galileo)

3.3 Io
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Io

• Lack of impact features.

• Youngest solid state surface in the solar system.

• Primary color is yellow, due to sulfur and sulfur com-
pounds.

• Abundant vulcanic landforms:

– About 200 calderas larger than 20 km.

– Long lava flows.

– Plumes of ejecta, indicating a geyser like origin.

3.4 Europa, covered with rafting ice
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Europa, covered with rafting ice

70× 30 km

3.5 Europa
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Europa

• High albedo.

• Smooth surface, showing similarities to pack ice on
Earth’s poles.

• Only few craters, indicating a young surface, perhaps
only 100 million years old.

• Liquid water layer under the ice crust?

3.6 Ganymede, bright and dark
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Ganymede, bright and dark

664× 518 km

3.7 Ganymede
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Ganymede

• Thin polar caps of H2O-ice.

• Two types of terrain, dark
and bright.

• Dark terrain is heavily
cratered, probably cre-
ated during the late heavy
bombardment.

3.8 Ganymede’s bright terrain
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Ganymede’s bright terrain

Bright terrain comes as “grooved regions” and “smooth re-
gions”.

• Grooved regions indicate a
global expansion, possibly
due to differentiation.

• Smooth regions were created
by tectonic activities next to
the expansion.

3.9 Callisto, dark and old
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Callisto, dark and old

Impact structure Asgard,
≈ 1 400 km across

3.10 Callisto
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Callisto

• Heavily cratered, most uniformly in the solar system.

• Maximum crater size about 100 km, no lunar like
plains.

• Craters are much flatter than those on rocky surfaces
due to vicious relaxation.

• Large multi-ring structures created by major impacts.

• Old surface, created during or shortly after the late
heavy boambardment.

• No tectonic activity.

3.11 Summary: Surface structures of Galilean
Satellites
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Summary: Surface structures of Galilean
Satellites

Io: Young surface, formed by ongoing vulcanic activety.

Europa: Completely covered by rafting(?) ice.

Ganymede: Dark (older) and bright (younger) areas, expan-
sion indicated by the latter.

Callisto: Heavily cratered, old surface.

4 Tidal heating

4.1 Part 4: Tidal heating
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Part 4: Tidal heating

4.2 Tidal forces of giant Jupiter

19

Tidal forces of giant Jupiter

4.3 Orbits of the Galilean Satellites
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Orbits of the Galilean Satellites

4.4 Tidal despinning
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Tidal despinning

Like Earth’s Moon, the rotational period of the Galilean
satellites had been decellerated until it was locked with the
orbital period (Laplace Resonance).

=⇒ Today, there are no tides like on Earth (but tidal heat-
ing due to despinning was very important earlier on).

4.5 Tides by orbital eccentricity
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Tides by orbital eccentricity

1. Jupitercentric longitude varies non-uniformly.

2. Rotation is uniform.

=⇒ Tidal flexing.

4.6 Consequences of tidal heating
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Consequences of tidal heating

Io: Differentiated, molten interiour. Because of continuous
recycling of the surface, all water, CO2, and other
volatiles escaped long ago.

Europa: Differentiated, metal-silicate core with 100–200 km
thick ice layer; possibly liquid water below an ice crust.

Ganymede: Partly differentiated, the corresponding expan-
sion caused grooved regions.

Callisto: Minor differentiation.

4.7 Summary: Tidal heating
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Summary: Tidal heating

Tidal heating by Jupiter can account for the different evo-
lution and surface structures of the Galilean satellites.

5 Subsurface oceans

5.1 Part 5: Subsurface oceans
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Part 5: Subsurface oceans

This part is based on
Zimmer et al. (2000),
Icarus 147, 329–347.

5.2 Induced magnetic field
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Induced magnetic field

• Jupiter’s magnetic dipole axis is tilted with respect to
the rotation axis.

• Moons orbiting in the equatorial plane experience a
varying magnetic field.

• This can induce electric currents in the moons, pro-
vided regions of sufficient electric conductivity.

• The produced secondary (or induced) magnetic field
adds to the background field of Jupiter.

• The total field was observed by the magnetometer of
the Galileo spacecraft.

5.3 Primary magnetic field
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Primary magnetic field

1. Background field:

(a) Internal field of Jupiter,

(b) contribution from large-scale magnetospheric cur-
rent system.

2. Contribution from local plasma currents caused by
nonelectromagnetic interaction with the moon.

ad 1: Can be considered uniform on the spatial scale of the
moons.

ad 2: Can be neglected for Callisto.

5.4 Assumed electrical structure of the moon
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Assumed electrical structure of the moon

A uniformly conducting
shell of conductivity σ.
Its response to a time-
varying magnetic field
is a classical problem of
electromagnetic theory.

5.5 Secondary magnetic field
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Secondary magnetic field

B(t) = ABσ=∞(t)

(

t−
φ

ω

)

Amplitude: 0 ≤ A < 1
Phase lag: 0◦ < φ ≤ 90◦

5.6 Observations at Callisto
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Observations at Callisto

Acceptable values
fall in the range
A = 0.7 . . . 1.

5.7 Observations at Europa
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Observations at Europa

Observations
indicate currents
flowing in the
ambient plasma.

5.8 Model fields corrected for plasma effects
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Model fields corrected for plasma effects

Acceptable values
fall in the range
A = 0.7 . . . 1.

5.9 Model fields for different phase lags
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Model fields for different phase lags

Data are reasonably
well reproduced with
(A, φ) = (1, 0◦).

5.10 Conclusions for Callisto

34



Conclusions for Callisto

A > 0.7 requires:

σ > 22 mS/m for arbitrary h,

σ > 26 mS/m for h < 350 km,

h = 2 km for σ = 2.75 S/m
(salty water),

d < 270 km.

5.11 Conclusions for Europa
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Conclusions for Europa

A > 0.7 requires:

σ > 58 mS/m for arbitrary h,

σ > 72 mS/m for h < 200 km,

h = 3.5 km for σ = 2.75 S/m
(salty water),

d < 175 km.

One currently assumed scenario: d ≈ 15 km, h ≈ 100 km.

6 Titan

6.1 Part 6: Titan
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Part 6: Titan

6.2 Under blue skys?
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Under blue skys?

1944: Kuiper observes an atmosphere containing methane.

6.3 Titan’s atmosphere
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Titan’s atmosphere

Surface pressure: 1.5 bar
Temperature: 93 K
Composition: > 90% N2,

Argon, CH4

6.4 Aerosol layers
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Aerosol layers

6.5 The methane “cycle”
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The methane “cycle”

6.6 An ethane-methane ocean?
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An ethane-methane ocean?

• A source to resupply the methane destroyed by pho-
tolysis is needed.

• Over geologic time, the ocean composition evolves to
become more ethane-rich.

• In detailed numerical models, the ocean depth ranges
from 500 m to 10 km.

• Recent radar observations indicate a specular reflec-
tion like from a liquid surface.

6.7 No global ocean!
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No global ocean!

• Titan is in Laplace resonnance on an eliptical orbit
(like the Galilean moons).

• Tidal forces on a global shallow ocean (less than 100 m
deep) would have dissipated the eccentricity long ago.

• Of course, this assumes that the eccentrcity was not
introduced recently by a large impact.

• The tidal argument can be overcome if the ocean is
confined in basins.

• The most compelling evidence against a global ocean
comes from near-infrared surface images . . .

6.8 Titan in the Hubble Space Telescope
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Titan in the Hubble Space Telescope

Near-infrared images of two hemispheres.

6.9 Map of the surface
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Map of the surface

6.10 Cassini/Huygens: Landing on Titan
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Cassini/Huygens: Landing on Titan

6.11 Primordial amonia-water surface ocean
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Primordial amonia-water surface ocean

• Titan formed in an ammonia–methane-rich circum-
planetary nebula.

• During the first 108 years, there was a warm (> 300 K)
environment.

• Ammonia was dissociated to generate a thick N2 at-
mosphere.

• As the ocean cools down, it is roofed over by Ice I,
while at the base high-pressure Ice IV and ammonia
dihydrate cristallize.

6.12 Evolution of an ammonia-water ocean
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Evolution of an ammonia-water ocean

Illustrations from Fortes (1999), Icarus 146, 444–452.

6.13 Hypothesis of a contemporary subsur-
face ammonia-water ocean
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Hypothesis of a contemporary subsurface
ammonia-water ocean

Depth : ≈ 200 km
Temperature: 235–240 K
Presure: 1–4.5 kbar
pH: 10.5–11.4

Such an ocean could be detected by the Cassini mission
(whereas any biological activety can not).

6.14 Microphysical modeling of aerosol for-
mation
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Microphysical modeling of aerosol formation

6.15 Optical properties of the model atmo-
sphere
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Optical properties of the model atmosphere

6.16 View at top of atmosphere
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View at top of atmosphere

6.17 View at the surface
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View at the surface

6.18 Stromboli Island as example surface struc-
ture
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Stromboli Island as example surface structure

6.19 Different illuminations
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Different illuminations

Point light Titan sky Isotropic

6.20 Stromboli Island under Titan’s sky
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Stromboli Island under Titan’s sky
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