Information on internal structure from shape, gravity field and rotation

Seismological information is available only for the Earth and in limited amounts for the Moon. Various geodetic data put constraints on the internal structure, but the ambiguity is much larger than for seismic data.

Gravity field: fundamentals

Gravitational potential V , Gravity (acceleration) $\mathbf{g}=-\mathbf{g r a d} \mathrm{V}$
Point mass: $V=-G M / r$ (also for spherically symmetric body)

Ellipsoid:

$$
V=-\frac{G M}{r}\left(1-J_{2}\left(\frac{a}{r}\right)^{2} P_{2}(\cos \theta)+\ldots\right)
$$

$\mathrm{P}_{2}(\cos \theta)=\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}$

General:

$$
\mathrm{V}=-\frac{\mathrm{GM}}{\mathrm{r}}\left(1+\sum_{\ell=2}^{\infty}\left(\frac{\mathrm{a}}{\mathrm{r}}\right)^{\ell} \sum_{\mathrm{m}=0}^{\ell} \mathrm{P}_{\ell}^{\mathrm{m}}(\cos \theta)\left[\mathrm{C}_{\ell}^{\mathrm{m}} \cos \mathrm{~m} \varphi+\mathrm{S}_{\ell}^{\mathrm{m}} \sin \mathrm{~m} \varphi\right]\right)
$$

General description of gravity field in terms of spherical harmonic functions. Degree $\ell=0$ is the monopole term, $\ell=2$ the quadrupole, $\ell=3$ the octupole, etc. A dipole term does not exist when the coordinated system is fixed to the centre of mass. J, C, S are non-dimensional numbers. Note: $\mathrm{J}_{2}=-\mathrm{C}_{2}{ }^{\circ}$ (times a constant depending on the normalization of the $\mathrm{P}_{\ell}{ }^{m}$)

[^0]
Measuring the gravity field

- Without a visiting spacecraft, the monopole gravity term (the mass M) can be determined by the orbital perturbations on other planetary bodies or from the orbital parameters of moons (if they exist)
- From a spacecraft flyby, M can be determined with great accuracy. J_{2} and possibly other low-degree gravity coefficient are obtained with less accuracy
- With an orbiting spacecraft, the gravity field can be determined up to high degree (Mars up to $\ell \approx 60$, Earth up to $\ell \approx 180$)
- The acceleration of a spacecraft orbiting (or passing) another planet is determined with high accuracy by radio-doppler-tracking: The Doppler shift of the carrier frequency used for telecommunication is proportional to the line-ofsight velocity of the spacecraft relative to the receiving antenna. $\Delta \mathrm{v}$ can be measured to much better than a $\mathrm{mm} / \mathrm{sec}$.
- On Earth, direct measurements of g at many locations complement other techniques.
- The ocean surface on Earth is nearly an equipotential surface of the gravity potential. Its precise determination by laser altimetry from an orbiting S/C reveals small-wavelength structures in the gravity field.

Mean density and uncompressed density

From the shape (volume) and mass of a planet, the mean density $\rho_{\text {mean }}$ is obtained. It depends on chemical composition, but through self-compression also on the size of the planet (and its internal temperature; in case of terrestrial planets only weakly so). In order to compare planets of different size in terms of possible differences in composition, an uncompressed density can be calculated: the mean density it would have, when at its material where at 1 bar. This requires knowledge of incompressibility k (from high-pressure experiments or from seismology in case of the Earth) and is approximate.

	$\rho_{\text {mean }}$	$\rho_{\text {uncompressed }}$	
Earth	5515	4060	$\mathrm{Kg} \mathrm{m}^{-3}$
Moon	3341	3315	$\mathrm{~kg} \mathrm{~m}^{-3}$

The mean density alone gives no clue on the radial distribution of density: a body could be an undifferentiated mixture (e.g. of metal and silicate, or of ice and rock in the outer solar system), or could have separated in different layers (e.g. mantle and core).

Christensen, Planetary Interiors and Surfaces, June 2007

Moment of inertia

$\mathbf{L}=\mathbf{I} \boldsymbol{\omega} \quad \mathrm{L}$: Angular momentum, ω : angular frequency, I moment of inertia

$$
\mathrm{I}=\iiint \rho \mathrm{s}^{2} \mathrm{dV} \quad \text { for rotation around an arbitrary axis, } \mathrm{s} \text { is distance from that axis }
$$

I is a symmetric tensor. It has 3 principal axes and 3 principal components (maximum, intermediate, minimum moment of inertia: $C \geq B \geq A$.) For a spherically symmetric body rotating around polar axis

$$
\mathrm{C}=\frac{8 \pi}{3} \int_{0}^{\mathrm{a}} \rho(r) \mathrm{r}^{4} \mathrm{dr} \quad \text { compare with integral for mass } \quad \mathrm{M}=4 \pi \int_{0}^{\mathrm{a}} \rho(r) \mathrm{r}^{2} \mathrm{dr}
$$

In planetary science, the maximum moment of a nearly radially symmetric body is usually expressed as $\mathrm{C} /\left(\mathrm{Ma}^{2}\right)$, a dimensionless number. Its value provides information on how strongly the mass is concentrated towards the centre.

Symbols: L - angular momentum, I moment of inertia (C,B,A - principal components), ω rotation frequency, s - distance from rotation axis, dV - volume element, M - total mass, a - planetary radius (reference value), a_{c} - core radius, ρ_{m} mantle density, ρ_{c}-core density

Determining planetary moments of inertia

McCullagh's formula $\quad \mathrm{J}_{2}=\frac{C-\frac{1}{2}(B+A)}{M a^{2}} \quad$ for ellipsoid ($\mathrm{B}=\mathrm{A}$): $\quad \mathrm{J}_{2}=\frac{C-A}{M a^{2}}$
In order to obtain $\mathrm{C} /\left(\mathrm{Ma}^{2}\right)$, the dynamical ellipticity is needed: $\mathrm{H}=(\mathrm{C}-\mathrm{A}) / \mathrm{C}$. It can be uniquely determined from observation of the precession of the planetary rotation axis due to the solar torque (plus lunar torque in case of Earth) on the equatorial bulge. For solar torque alone, the precession frequency relates to H by:

$$
\omega_{\mathrm{P}}=\frac{3}{2} \frac{\omega_{\text {orbit }}^{2}}{\omega_{\text {spin }}} \mathrm{H} \cos \varepsilon
$$

When the body is in a locked rotational state (Moon), H can be deduced from nutation.

For the Earth $T_{P}=2 \pi / \omega_{p}=25,800 \mathrm{yr}$ (but here also the lunar torque must be accounted)
$H=1 / 306$ and $J_{2}=1.08 \times 10^{-3} \quad \Rightarrow \quad \mathrm{C} /\left(\mathrm{Ma}^{2}\right)=\mathrm{J}_{2} / \mathrm{H}=0.3308$
This value is used, together with free oscillation data, to constrain the radial density distribution.

```
Symbols: }\mp@subsup{J}{2}{}-\mathrm{ gravity moment, }\mp@subsup{\omega}{\textrm{P}}{}\mathrm{ precession frequency, }\mp@subsup{\omega}{\mathrm{ orbit }}{}\mathrm{ - orbital frequency (motion around sun),}\mp@subsup{\omega}{\mathrm{ spin}}{}-\mathrm{ spin
```

frequency, ε - obliquity

Determining planetary moments of inertia II

For many bodies no precession data are available. If the body rotates sufficiently rapidly and if its shape can assumed to be in hydrostatic equilibrium [i.e. equipotential surfaces are also surfaces of constant density], it is possible to derive $\mathrm{C} /\left(\mathrm{Ma}^{2}\right)$ from the degree of ellipsoidal flattening or the effect of this flattening on the gravity field (its J_{2}-term). At the same spin rate, a body will flatten less when its mass is concentrated towards the centre.

Darwin-Radau theory for an slightly flattened ellipsoid in hydrostatic equilibrium

$$
\mathrm{m}=\frac{\omega_{\text {spin }}^{2} \mathrm{a}^{3}}{\mathrm{GM}} \quad \text { measures rotational effects (ratio of centrifugal to gravity force at equator). }
$$

Flattening is $\mathrm{f}=(\mathrm{a}-\mathrm{c}) / \mathrm{a}$. The following relations hold approximately:

$$
f=\frac{3}{2} J_{2}+\frac{1}{2} m \quad \frac{C}{M a^{2}}=\frac{2}{3}-\frac{4}{15} \sqrt{\frac{5}{2} \frac{m}{f}-1} \quad \frac{C}{M a^{2}}=\frac{2}{3}-\frac{4}{15} \sqrt{\frac{4 m-3 J_{2}}{m+3 J_{2}}}
$$

Structural models for terrestrial planets

	$\rho_{\text {mean }}$ $\mathrm{kg} \mathrm{m}^{-3}$	$\rho_{\text {uncompr }}$ $\mathrm{kg} \mathrm{m}^{-3}$	$\mathrm{C} / \mathrm{Ma}^{2}$
Mercury	5430	5280	$?$
Venus	5245	3990	$?$
Earth	5515	4060	0.3308
Moon	3341	3315	0.390
Mars	3935	3730	0.366

Assuming that the terrestrial planets are made up of the same basic components as Earth (silicates / iron alloy with zero-pressure densities of $3300 \mathrm{~kg} \mathrm{~m}^{-3}$ and $7000 \mathrm{~kg} \mathrm{~m}^{-3}$, respectively), core sizes can be derived.

Ambiguities remain, even when $\rho_{\text {mean }}$ and $\mathrm{C} / \mathrm{Ma}^{2}$ are known: the three density models for Mars satisfy both data, but have different core radii and densities with different sulphur contents in the core

Ceres

From HST images, the flattening of Ceres has been determined within 10%. Its mean density, $2080 \mathrm{~kg} \mathrm{~m}^{-3}$, hints at an ice-rock mixture. The flattening is too small for an undifferentiated body in equilibrium. From Darwin-Radau theory, $\mathrm{C} / \mathrm{Ma}^{2} \approx 0.34$. Models with an ice mantle of $\sim 120 \mathrm{~km}$ thickness above a rocky core agree with the observed shape. [Recent result that needs confirmation]

Gravity anomalies

Gravity anomaly $\Delta \mathrm{g}$: Deviation of gravity (at a reference surface) from theoretical gravity of a rotating ellipsoidal body.

Geoid anomaly $\mathbf{\Delta N}$: Deviation of an equipotential surface from a reference ellipsoid (is zero for a body in perfect hydrostatic equilibrium).
Isostasy means that the extra mass of topographic elevations is compensated, at not too great depth, by a mass deficit (and vice versa for depressions).
In the Airy model, a crust with constant density ρ_{c} is assumed, floating like an iceberg on the mantle with higher density ρ_{m}. A mountain chain has a deep crustal root.
When the horizontal scale of the topography is much larger than the vertical scales, the gravity anomaly for isostatically compensated topography is approximately zero.

Without compensation, or for imperfect compensation, a gravity anomaly is observed. Also for very deep compensation (depth not negligible compared to horizontal scale) a gravity anomaly is found.

Examples for different tectonic settings

Mars gravity field

Comparing the gravity anomaly of Mars with the topographic height, we can conclude:
Tharsis volcanoes not compensated, only slight indication for elastic plate bending \Rightarrow volcanoe imposed surficially on thick lithosphere

Hellas basin shows small gravity anomaly \Rightarrow compensated by thinned crust Valles Marineris not compensated

Topographic dichotomy (Southern highland, Northern lowlands) compensated \Rightarrow crustal thickness variation
Tharsis bulge shows large-scale positive anomaly. Because incomplete compensation is unlikely for such broad area, deep compensation is must be assumed (for example by a huge mantle plume)

Christensen, Planetary Interiors and Surfaces, June 2007

Forced libration of Mercury

Mercury's rotation is in a 3:2 resonance with its orbital motion. For each two revolutions around the sun, it spins 3 times around its axis. This state is stabilized (ag\&irist slowing down by tidal friction) by the strong eccentricity e=0.206 of Mercury's orbit. The orbital angular velocity follows Kepler's 2nd law and while being on average $2 / 3$ of the spin rate, it exceeds the spin rate slightly at perihelion, where the sun's apparent motion at a fixed point on Mercury's surface is retrograde. At perihelion tidal effects are largest and here they accelerate the spin, rather than slowing it down like in other parts of the orbit.
Mercury is slightly elongated in the direction pointing towards the sun when it is at perihelion. The solar torque acting on the excess mass makes the spin slightly uneven. This is called a forced (or physical) libration.

$$
-2+2+2+2
$$

2.

Forced librations of Mercury

The libration angle Φ indicates the deviation of the orientation of a fixed point on the planet from that expected for uniform rotation. Φ varies periodically over a Mercury year. Its amplitude Φ_{0} depends on whether the whole planet follows the libration, or if
 the mantle can slip over fluid layer in the outer core. In the latter case, the libration amplitude is larger. The libration amplitude is proportinal to $C_{m} /(B-A)$, where C_{m} indicates the moment of inertia of the mantle; more precisely: of that part of the planet that follows the librational motion.

$$
\frac{C_{m}}{C}=\frac{C_{m}}{B-A} \times \frac{B-A}{M a^{2}} \times \frac{M a^{2}}{C}
$$

$\mathrm{C}_{\mathrm{m}} / \mathrm{C}=1$ would indicate a completely solid core, $\mathrm{Cm} / \mathrm{C}<1$ a (partly) liquid core. $(B-A) /\left(\mathrm{Ma}^{2}\right)=4 \mathrm{C}_{22}$. From Mariner 10 flybys $\mathrm{C}_{22} \approx(1.0 \pm 0.5) \times 10^{-5}$ $\mathrm{C} / \mathrm{Ma}^{2}$ can be estimated to be in the range $0.33-0.38$.
$\Phi_{0}=36 \pm 2$ arcsec has recently been measured using radio interferometry with radar echos of signals from ground-based stations.

Forced librations of Mercury

The accuracy of the derived value of $\mathrm{C}_{\mathrm{m}} / \mathrm{C}$ is strongly affected by the large uncertainty on the C_{22} gravity term (50% error). But the probability distribution for $\mathrm{C}_{\mathrm{m}} / \mathrm{C}$ is peaked around a value of 0.5 . The probability for values near one is small.
\Rightarrow It is likely that Mercury has a (partly) liquid core,
\Rightarrow This agrees with the observation of an internal magnetic field. The operation of a dynamo (the most likely cause for Mercury's field) requires a liquid electrical conductor.

[^0]: Symbols [bold symbols stand for vectors]: G - gravitational constant, M-total mass of a body, r - radial distance from centre of mass, a - reference radius of planet, e.g. mean equatorial radius, θ - colatitude, φ - longitude, P_{n} - Legendre polynomial of degree n, P_{ℓ}^{m} - associated Legendre function of degree ℓ and order $m, J_{n}, C_{\ell}^{m}, S_{\ell}^{m}$ - expansion coefficients

