IMPRS Lecture @ MPS Magnetospheres – Earth and Outer Planets 12-16 September 2005

Norbert Krupp Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany

Max-Planck-Institut für Sonnensystemforschung

Outline

Part 1: Planetary Magnetospheres – Overview Part 2: Magnetosphere of Jupiter Part 3: Magnetosphere of Saturn

IMPRS Lecture @ MPS

Max-Planck-Institut fü

Magnetospheres

IMPRS Lecture @ MPS

12-16 September 2005

Intrinsic planetary magnetospheres - comparison

small

intermediate

huge

IMPRS Lecture @ MPS

12-16 September 2005

Comparative magnetospheres

MERCURY:

- Small
- Minute timescales
- Solar wind dominated

Mariner, MESSENGER Bepi Colombo Mercury to scale Magnetic Tell Mag

EARTH:

Intermediate

Hour timescales

Solar wind driven

~100 missions since 1957 e.g. Polar, Geotail, FAST, Sampex , Cluster

Testing our understanding of Sun-Earth connections through application to other planetary systems

JUPITER: and other Gas Giants

- · Timescales minutes to months?
- Rotationally driven solar wind triggered?

Pioneer, Voyager, Ulysses, Galileo, Cassini Juno

Norbert Krupp

Orientation of rotation and magnetic axes

Norbert Krupp

IMPRS Lecture @ MPS

12-16 September 2005

Solar wind conditions in the vicinity of the magnetospheres

Planet	Magnetic field [nT]	plasma density [cm ⁻³]
Mercury	46 – 21	73 - 33
Earth	8	5
Jupiter	1	0.2
Saturn	0.6	0.06
Uranus	0.3	0.01
Neptune	0.005	0.005

The velocity is almost constant in the inner part of the heliosphere and ranges between 400 and 800 km/s

Sizes and shape of planetary magnetospheres $R_M/R_p \sim 1.2 \{B_0^2/\rho_{sw} V_{sw}\}^{1/6}$

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
B _o	.003	.31	4.28	.22	.23	.14
R _M Calc.	1.4 R _M	10 R _E	42 R _J	19 R _s	25 R _U	24 R _N
R _M Obs.	1.4-1.6 R _M	8-12 R _E	50-100 R _J	16-22 R _s	18 R _U	23-26 R _N

Plasma sources of planetary magnetospheres

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
N _{max} cm ⁻³	~1	1-4000	>3000	~100	~3	~2
Compo sition	H+ Solar Wind	O+ H+ Iono- sphere	O ⁿ⁺ S ⁿ⁺ H ⁺ Io	O ⁺ , H ₂ O ⁺ H ⁺ , N ₂ Rings, icy satellites Titan	H+ Iono- sphere	H ⁺ N ⁺ Triton, Iono- sphere
Source kg/s	?	5	700- 1200	~2	~0.02	~0.2

Max-Planck-Institut für

Charge Energy Mass Spectrometer (CHEMS) on Cassini records "fingerprints" of ion composition at Earth, Jupiter, and Saturn

Small magnetospheres Mercury and Ganymede

Mercury - Magnetic field detected by *Mariner 10* in 1974

Ganymede - Magnetic field detected by *Galileo* in 1996

IMPRS Lecture @ MPS

12-16 September 2005

Norbert Krupp

Max-Planck-Institut für

Diameter of Earth

Huge magnetospheres Giant Planet Magnetospheres

Main differences from Earth:

- 1. Rotation dominated; driving energy is the fast rotation and not the solar wind
 - plasma is (partly) corotating with the planet

om Earth: Jupiter and Saturn

- Symmetric
- ~Dipolar
- Strong plasma production
- Limited solar wind influence

Uranus and Neptune

- 2. Strong plasma sources inside the magnetosphere (satellites or rings)
 - radial outward plasma transport; additional loss mechanisms

- Highly asymmetric,
- Highly non-dipolar
- Complex transport (SW + rotation)
- Multiple plasma sources (ionosphere + solar wind + satellites)

Corotation in planetary magnetospheres

IMPRS Lecture @ MPS

12-16 September 2005

Earth's-like magnetosphere

- plasmasphere in the inner magnetosphere with closed flow lines
- if scaled to Jupiter: closed flow lines outside the magnetosphere
 - rotation dominated

Magnetosphere interactions

12-16 September 2005

Norbert Krupp

Max-Planck-Institut für

Magnetospheres of Jupiter and Saturn Comparison

IMPRS Lecture @ MPS

12-16 September 2005

Norbert Krupp

Max-Planck-Institut für

Recently published books about outer planets

SPACE SCIENCES SERIES OF ISSI

The Outer Planets and their Moons

T. Encrenaz, R. Kallenbach, T.C. Owen and C. Sotin (Eds.)

IMPRS Lecture @ MPS

12-16 September 2005

Spacecraft exploration of Jupiter and Saturn

IMPRS Lecture @ MPS

Spacecraft exploration of Jupiter and Saturn

	TABLE I							
	Measured positions of magnetospheric boundaries at Jupiter and Saturn.							
			local	distance	standoff	distance	standoff	
			time	$BS\left(R_{p}\right)$	$BS\left(R_{p}\right)$	$MP\left(R_{p}\right)$	$MP\left(R_{p}\right)$	
P 10	1974	Jupiter	1000	108.9	102-130	96.4-50	80-96	
		Jupiter	0600	124-189		98-150		
P 11	1974	Jupiter	1000	109.7-79.5	92-100	97-64.5	80-90	
		Jupiter	1200	90.8-95		56.6-80		
	1979	Saturn	1000	24-20		17		
		Saturn	1200	49-102		30-40		
VG 1	1979	Jupiter	1000	85.7-55.7	77-103	67.1-46.7	62-85	
		Jupiter	0400	199.2-258		158.3-165.4		
	1980	Saturn		26	23	23-24		
		Saturn		78		43-47		
VG 2	1979	Jupiter	1000	98.8-66.5	79-95	71.7-61.9	70-101	
		Jupiter	0300	282.3-283.3		169.1-279.4		
	1981	Saturn		32-24	18.5	19		
		Saturn		78-88	50-70			
ULS	1992	Jupiter	1000	113	85-104	110-87	72-104	
		Jupiter	1800	109-149		83-124		
GLL	1995	Jupiter	0600	130-214	100-130	120	90	
	2000	Jupiter	1750			107-149	84-107	
		Jupiter	1920	130-133	82-105	120-150	88-98	
	2001	Jupiter	1625	108-125	82-96	102	90	
CAS	2001	Jupiter	1900	> 450		204	111	
	2004	Saturn	0750	49.2-40.5		35		
			-0800					
	(SOI)	Saturn	0540					

IMPRS Lecture @ MPS

Cassini trajectory around Saturn

IMPRS Lecture @ MPS

IMPRS Lecture @ MPS Magnetospheres of Earth and Outer Planets September 12-16, 2005

Part 2: The Magnetosphere of Jupiter

Norbert Krupp Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany

Outline Jupiter

- Global configuration
 - regions
 - the special role of lo
 - particle flow pattern
 - global ion composition
 - neutrals

Dynamics

- interchange motion
- aurora
- particle injections
- substorm-like processes (particle bursts)
- boundary phenomena
- Moon phenomena
 - Ganymede's magnetosphere
 - lo torus
 - Europa torus

Norbert Krupp

Global configuration of the Jovian magnetosphere

regions the special role of lo particle flow pattern global ion composition neutrals

IMPRS Lecture @ MPS

Jupiter's magnetosphere

IMPRS Lecture @ MPS

12-16 September 2005

Jupiter's inner radiation belts inside r = 5 RJ

discovered after the detection of bursts in the radio waves Burke and Franklin (1955):

synchrotron emission from trapped particles in radiation belts was used to determine the rotation period

particles in this region interact with the moons (Metis, Adrastea, Amalthea, Thebe); the Jovian rings

IMPRS Lecture @ MPS

12-16 September 2005

Jupiter's moon lo source of sulfur and oxygen in Jupiter's magnetosphere

After quantities of lava are removed from below, the crust cracks and tilts, making tall, blocky mountains.

IMPRS Lecture @ MPS

lo's volcanoes and geysers

Pilan Plume

Prometheus

Pilan 5 months apart

IMPRS Lecture @ MPS

12-16 September 2005

Io Plasma Torus (Schneider and Trauger)

Norbert Krupp

IMPRS Lecture @ MPS

12-16 September 2005

Jupiter's magnetosphere

IMPRS Lecture @ MPS

12-16 September 2005

Norbert Krupp

Max-Planck-Institut fü

Regions in Jupiter's magnetosphere

IMPRS Lecture @ MPS

12-16 September 2005

Particles inside 40 RJ

IMPRS Lecture @ MPS

12-16 September 2005

Norbert Krupp

Max-Planck-Institut für

Periodic modulation of particle and field parameter

IMPRS Lecture @ MPS

12-16 September 2005

Jupiter Structure and dynamics of the outer magnetosphere

Vasyliunas 1983

IMPRS Lecture @ MPS

12-16 September 2005

Flow measurements in Jupiter's magnetosphere

- Voyager 1 PLS results
 - McNutt et al., JGR, 86, 8319, 1981
 - Sands and McNutt, JGR, 93, 8502, 1988
- Velocity lags rigid corotation trend to "constant" velocity outside 20 RJ

Norbert Krupp

Global Flow Pattern in Jupiter's equatorial plane Galileo/EPD results

- flow is predominantly in corotation direction
- temporal stable in this averaged view
- flows in the deep magnetotail still in corotation direction, however substantially subrotational
- deviation from "normal" state due to dynamic processes
- larger flows with radial outward components (100-200 km/s) at dawn compared to smaller flows with small radial inward components at dusk (50 km/s)

Norbert Krupp

Krupp et al., 2001
Global Flow Pattern in Jupiter's equatorial plane strong local time asymmetry between dawn and dusk

12-16 September 2005

Averaged flow pattern in the equatorial plane

IMPRS Lecture @ MPS

12-16 September 2005

Norbert Krupp

Max-Planck-Institut für

Configuration of magnetotail field lines and current sheet thickness

12-16 September 2005

MHD simulations of the Jovian magnetosphere

IMF=0

IMF=southward (top) and northward (bottom)

Max-Planck

First global ion composition ratios of the Jovian magnetosphere

Radioti et al., 2005

Norbert Krupp

IMPRS Lecture @ MPS

12-16 September 2005

First global ion composition ratios of the Jovian magnetosphere Galileo-Voyager comparison

Radioti et al., 2005

Norbert Krupp

IMPRS Lecture @ MPS

Jupiter as a source of hot neutrals

IMPRS Lecture @ MPS

12-16 September 2005

Norbert Krupp

Max-Planck-Institut für

Jupiter as a source of hot neutrals

IMPRS Lecture @ MPS

12-16 September 2005

Norbert Krupp

Max-Planck-Institut für

Energetic Neutral Atom (ENA) imaging

ENA principle

The co-existence of an energetic charged particle population (solar wind, magnetospheric plasma) and a planetary neutral gas leads to interaction, e.g., through charge-exchange:

 $A^{+}(energetic) + P(cold) \Rightarrow A(energetic) + P^{+}(cold)$

Little exchange of momentum \rightarrow conserve velocity ENA are not influenced by E- and B-fields; they travel on straight ballistic path like a photon Directional detection of ENAs yields a global image of the interaction and allows to deduce properties of the source populations.

ENA production mechanism in space plasmas

Charge - exchange reaction with atmospheric / exospheric gases Sputtering of planetary atmospheres Backscattering from the planetary atmospheres (ENA albedo) Sputtering from planetary surfaces Ion neutralization / sputtering on dust particles Recombination (CMI)

IMPRS Lecture @ MPS

12-16 September 2005

ENA principle

The directional ENA flux (J_{ena}) at a point in space represents an integral along the chosen line-of-sight of the product of the hot ion flux toward the observation point $(j_{ion}(\mathbf{r}, \mathbf{v}, t))$, the cold neutral density $(n_{neutral}(\mathbf{r}, t))$, and the charge exchange cross section. That is,

$$j_{ENA} \cong \int_{0}^{\infty} dr \times j_{Ion}(\vec{r}, \vec{v}, t) \times n_{Neutral}(\vec{r}) \times \sigma_{CE}(|\vec{v}|)$$

where

- **r** is the location along the line-of-sight at which the charge exchange interaction occurs,
- v is the ion vector velocity at the instant of the interaction

t time

Dynamics of the Jovian magnetosphere

radial transport interchange motion injections plasma sheet dynamics particle bursts boundary phenomena aurora

Norbert Krupp

IMPRS Lecture @ MPS

Jupiter - Particle motion in the magnetosphere

IMPRS Lecture @ MPS

12-16 September 2005

Interchange motion

IMPRS Lecture @ MPS

12-16 September 2005

Jupiter's Aurora - The Movie Fixed magnetic co-ordinates rotating with Jupiter

Clarke et al. Grodent et al. HST

IMPRS Lecture @ MPS

Jupiter Different types of aurora

Jupiter`s main aurora

- Shape constant, fixed in magnetic co-ordinates
- Magnetic anomaly in north
- Steady intensity
- ~1° Narrow

Clarke et al., Grodent et al. HST

IMPRS Lecture @ MPS

12-16 September 2005

Large-scale current system in the Jovian magnetosphere

After Hill (1979) and Vasyliunas (1983)

- Discovery of a local time asymmetry in the system of azimuthal currents which distend the field lines away from the planet (Bunce and Cowley, 2001a; Khurana, 2001)
- Investigations of field-aligned currents associated with magnetosphere-ionosphere coupling currents found to be ~1µAm-2 (Bunce and Cowley, 2001b; Khurana, 2001)

Particle measurements at equator and correlation with secondary oval

> Most prominent and well defined boundary \rightarrow change in the electron pitch angle distributions located between 10 and 17 R_J.

Norbert Krupp

Max-Planck-Institut für

IMPRS Lecture @ MPS

12-16 September 2005

Galileo observations

> Local time dependence of the PAD boundary in the equatorial plane

Coverage of the Jovian magnetosphere in most of the local time sectors.

➢ No strong local time asymmetry between dawn and dusk.

Norbert Krupp

IMPRS Lecture @ MPS

Tracing the magnetic field lines

> Comparing the footprints of the PAD boundary (VIP4 model) with the HST observations

➢ Good conjugation between the PAD boundary and the secondary oval

Norbert Krupp

Wave-particle interaction

> Pitch angle diffusion coefficient

$$D_{\alpha\alpha} = \frac{2\pi f_c}{\gamma} \left(\frac{B'}{B}\right)^2 \cdot \varepsilon$$

Strong diffusion limit

Considering:	
L – [10, 17] R _J	B – [350, 50] nT
f _c – [10 ⁴ , 10 ³] Hz	E' – [1.0, 0.1] mV/m

 $D_{\alpha\alpha} \sim 2 D_{sd} \rightarrow$ The conditions for strong pitch angle diffusion are satisfied.

Norbert Krupp

Precipitation energy flux

➤Considering:

> The precipitation energy flux given by :

 $\varepsilon = \int_{E_{\min}}^{E_{\max}} E \cdot j(E, \gamma) \cdot dE$

Measured electron's spectra at the PAD boundary.

Strong pitch-angle scattering.

Electron's energy : $E_1 \in [55, 304]$ keV. $E_2 \in [55, 188]$ keV.

Sufficient to directly produce the observed auroral emissions of the secondary oval without the need of a field aligned potential drop.

Norbert Krupp

Cassini – Galileo Rendezvous at Jupiter

IMPRS Lecture @ MPS

12-16 September 2005

Dynamics in Jupiter's magnetosphere Energetic Particle Injections & correlation to auroral emissions

HST Image of Jupiter's UV aurora

Mauk et al., 1997; 1999, 2000

Extreme "storm-time" dynamics observed in the vicinity of Europa's orbit

Auroral manifestation of near-Europa storm dynamics

IMPRS Lecture @ MPS

12-16 September 2005

Dynamics in Jupiter's magnetosphere Particle injections

The behaviors of Jupiter magnetosphere injections were understood by invoking sudden radial injections over confined regions in azimuth followed by slow, dispersive, azimuthal drifts.

IMPRS Lecture @ MPS

Dynamics of the Jovian magnetotail

IMPRS Lecture @ MPS

12-16 September 2005

Global nature of several days periodicities

IMPRS Lecture @ MPS

12-16 September 2005

Max-Planck-Institut für

2

(1)

 \bigotimes

(3)

Interpretation of observations

IMPRS Lecture @ MPS

12-16 September 2005

Internally driven magnetotail Theory

Local stress balance in the middle and outer magnetosphere is contained in the momentum equation for the plasma

$$\vec{\rho}\omega^2 r + \nabla P = \vec{j} \times \vec{B}$$

centrifugal force pressure magnetic force density gradient density

Current system in the Jovian magnetosphere

The currents at the equatorial plane of the magnetotail are

$$\vec{j}_r + \vec{j}_{\varphi} = -\dot{\rho}rB_{\theta}\omega\vec{e}_r - \frac{\rho\omega^2 r}{B_{\theta}}\vec{e}_{\varphi}$$

Norbert Krupp

IMPRS Lecture @ MPS

Time estimations

Ampere's law:

$$(\nabla \times \vec{B})_{\varphi} = \mu_0 j_{\varphi} \approx -\frac{B_r}{d}$$

$$\frac{\partial B_{\theta}}{\partial t} = \frac{\partial \rho}{\partial t} \frac{\mu_0 \omega^2 r d}{B_r}$$

 $\Delta t = \frac{\Delta B_{\theta} B_{r}}{\dot{\rho} \mu_{0} \omega^{2} r d}$

Input parameters: $\Delta B_{\theta} \approx 0.1B_r$

 $\omega = V / R$

Distance to x-line

0.75 nT

80 Rj

The most probable mass loading rate

200 kg/s

Max-Planck-Institut für

IMPRS	lactura	\otimes I	IDS
IVIFRO	Leciure		11-0

12-16 September 2005

Radio emissions at Jupiter from various regions

IMPRS Lecture @ MPS

12-16 September 2005

Jupiter

Aurora and tail disruptive events (Grodent et al., 2004)

Distance70-120 Rj>100 RjLocal TimepostmidnightpremidnightSize~25 Rj5-50 RjDurationMins-hours5 min-1hourRecurrence4 hours-3days1-2 days		In Situ* Russell et al., Woch et al., Krupp et al.	Auroral Spots
Local TimepostmidnightpremidnightSize~25 Rj5-50 RjDurationMins-hours5 min-1hourRecurrence4 hours-3days1-2 days	Distance	70-120 Rj	>100 Rj
Size~25 Rj5-50 RjDurationMins-hours5 min-1hourRecurrence4 hours-3days1-2 days	Local Time	postmidnight	premidnight
DurationMins-hours5 min-1hourRecurrence4 hours-3days1-2 days	Size	~25 Rj	5-50 Rj
Recurrence 4 hours-3days 1-2 days	Duration	Mins-hours	5 min-1hour
	Recurrence	4 hours-3days	1-2 days

Max-Planck-Institut für

Jupiter Tail disruption events - numbers

~8000 Rj x 0.01 ions/cc = 500 tons per plasmoid

1 per day = 0.006 ton/s 1 per hour = 0.15 ton/s

IMPRS Lecture @ MPS
Dynamics in the Jovian magnetosphere

12-16 September 2005

Configuration of the Jovian magnetosphere

IMPRS Lecture @ MPS

12-16 September 2005

Norbert Krupp

Dynamics in the Jovian magnetosphere Jupiter aurora

Norbert Krupp

IMPRS Lecture @ MPS

12-16 September 2005

IMPRS Lecture @ MPS

12-16 September 2005

Norbert Krupp

Dynamics in the Jovian magnetosphere

Norbert Krupp

IMPRS Lecture @ MPS

12-16 September 2005

Ganymede magnetosphere A magnetosphere within a magnetosphere

Ganymede: Electron beams in Ganymede's magnetosphere

Williams, JGR, 2004 EPD results from Galileo's orbit 29

- Ganymede's magnetosphere more complex
- Electron beams may be formed by the entry and subsequent quasichaotic drift of ambient Jovian electrons

IMPRS Lecture @ MPS

Ganymede: Electron beams in Ganymede's magnetosphere

Williams, JGR, 2004 EPD results from Galileo's orbit 29

- Ganymede's magnetosphere more complex
- Electron beams may be formed by the entry and subsequent quasi-chaotic drift of ambient Jovian electrons

Norbert Krupp

IMPRS Lecture @ MPS

Ganymede: Multi-Fluid simulations in Ganymede's magnetosphere

Paty and Winglee, GRL, 2004:

Simulation results compared to Galileo magnetometer measurements and Hubble observations of Ganymede's UV aurora

 \rightarrow good agreement of precipitation in the cusp

 \rightarrow ionospheric outflow rates determined (10^26 ions/s)

plasma-moon interactions

Interaction between magnetospheric plasma and lo-Torus

Particle Observations:

- bounce loss cone (0° and 180° PA) for protons, oxygen and sulphur
- additional loss cone at 90° PA for sulphur

Possible loss mechanisms:

- bounce loss cone: scattering processes near Jupiter
 - \rightarrow depletion at 0° (and 180°) pitch angle
- scattering processes in lo-torus region
 - \rightarrow depletion at 90° pitch angle

Lagg et al., 1998

IMPRS Lecture @ MPS

12-16 September 2005

Interaction between magnetospheric plasma and lo-Torus

Possible loss mechanisms for 90 deg PA:

- bounce resonant waves
- satellite sweeping
- shell splitting
- particle-particle interactions in lo-torus

Lagg et al., 1998

IMPRS Lecture @ MPS

particle-particle interaction in the lo-Torus

- Coulomb scattering \rightarrow small cross section
- charge exchange ion-ion \rightarrow not observable with EPD
- charge exchange ion-neutral:

estimating average neutral number density n and lifetime Tau_cx [Ip, 1981]:

$$\overline{n}(\lambda_m) = \int_{\lambda=0}^{\lambda_m} \frac{n_{Torus}(\lambda)}{v_{\parallel}(\lambda)} ds \Big/ \int_{\lambda=0}^{\lambda_m} \frac{1}{v_{\parallel}(\lambda)} ds \quad , \quad \tau_{cx} = \frac{1}{\overline{n}\sigma_{cx}v}$$

assume Gaussian distribution for neutral torus density:

$$n_{Torus}(r,\lambda) = n_0 \exp^{-\left(\frac{\lambda}{\lambda_0}\right)^2} \exp^{-\left(\frac{r-R_{Torus}}{r_0}\right)^2} \approx n_0 \exp^{-\left(\frac{\lambda}{\lambda_0}\right)^2}$$

Lagg et al., 1998

Norbert Krupp

IMPRS Lecture @ MPS

12-16 September 2005

neutral density in the lo-Torus from energetic particle measurements

energy	reaction	σ_{cx}	Dαα	T_L	λ_0	n_0
[keV/nucl]		[cm ²]	$[cm^2s^{-1}]$	[s]	[°]	[cm ⁻³]
16 - 30	$S^+ + X$	2.36· 10 ⁻¹⁵	2.1· 10 ^{−5}	3.0· 10 ⁵	17	18
30 - 62		2.02 ⋅ 10 ⁻¹⁵	4.4· 10 ^{−5}	1.9· 10 ⁵	23	25
62 - 310		9.00 · 10 ^{−16}	4.9· 10 ⁻⁵	1.4· 10 ⁵	23	34
12 - 26	$O^+ + X$	1.51· 10 ^{−15}	6.9· 10 ^{−5}	2.3· 10 ⁵	31	11
26 - 51		1.09· 10 ⁻¹⁵	2.8 · 10 ^{−5}	2.3· 10 ⁵	30	23
modell/observation of		density OI [cm ⁻³] density SI [cm ⁻³]				3]
	energy [keV/nucl] 16 - 30 30 - 62 62 - 310 12 - 26 26 - 51	energy reaction [keV/nucl] 16 - 30 $S^+ + X$ 30 - 62 62 - 310 12 - 26 $O^+ + X$ 26 - 51 O	energy [keV/nucl]reaction [cm2]16 - 30 30 - 62 $S^+ + X$ $2.36 \cdot 10^{-15}$ 30 - 62 62 - 310 $2.02 \cdot 10^{-15}$ 12 - 26 26 - 51 $O^+ + X$ $1.51 \cdot 10^{-15}$ 12 - 26 1.09 \cdot 10^{-15} $O^+ + X$ $1.51 \cdot 10^{-15}$ ell/observation ofdensity O	energy [keV/nucl]reaction [cm2] σ_{cx} [cm2] $D_{\alpha\alpha}$ [cm2s^{-1}]16 - 30 30 - 62 $S^+ + X$ 2.36 $\cdot 10^{-15}$ 2.02 $\cdot 10^{-15}$ 2.02 $\cdot 10^{-15}$ 4.4 $\cdot 10^{-5}$ 9.00 $\cdot 10^{-16}$ 4.9 $\cdot 10^{-5}$ 12 - 26 26 - 51 $O^+ + X$ 1.51 $\cdot 10^{-15}$ 1.09 $\cdot 10^{-15}$ 2.8 $\cdot 10^{-5}$ ell/observation ofdensity OI [cm^{-3}]	energy [keV/nucl]reaction σ_{cx} σ_{cx} $[cm^2]$ $D_{\alpha\alpha}$ $[cm^2s^{-1}]$ T_L [s]16 - 30 30 - 62 $S^+ + X$ $2.36 \cdot 10^{-15}$ $2.1 \cdot 10^{-5}$ $3.0 \cdot 10^5$ 30 - 62 62 - 310 $2.02 \cdot 10^{-15}$ $4.4 \cdot 10^{-5}$ $1.9 \cdot 10^5$ 62 - 310 $9.00 \cdot 10^{-16}$ $4.9 \cdot 10^{-5}$ $1.4 \cdot 10^5$ 12 - 26 26 - 51 $O^+ + X$ $1.51 \cdot 10^{-15}$ $6.9 \cdot 10^{-5}$ $2.3 \cdot 10^5$ 12 - 26 26 - 51 $O^+ + X$ $1.51 \cdot 10^{-15}$ $6.9 \cdot 10^{-5}$ $2.3 \cdot 10^5$ ell/observation ofdensity OI [cm^{-3}]density SI	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	density Of [cm]	density st [cm]
Brown [1981]	30	
Smith and Strobel [1985]	30	6
Skinner and Durrance [1986]	>29±16	>6±3
this work	\approx	25

Lagg et al., 1998

IMPRS Lecture @ MPS

Europa torus from chargedand neutral particle measurements

