

Outline

- What is overshoot?
- Why is overshoot interesting?
- Overshoot modeling different approaches ↔ different results
- What causes the discrepancies?
- What can we expect for solar overshoot?

Why is overshoot interesting?

Dynamo theory: • Generation of strong toroidal magnetic field in solar tachocline

- Suppression of buoyancy instabilities require subadiabatic stratification
- $\beta |\delta|$ enters stability criteria, where $\beta = p_{gas} / p_{mag} \approx 10^5 (10 T)$

Indirect observations of convection by helioseismology:

- Measurements of flow fields near surface (local helioseismology)
- Measurements of differential rotation and meridonal circulation (local / global)
- Measurements of overshoot (global) change of soundspeed owing to stratification change

Overshoot modeling

different approaches ↔ different results ?

- van Ballegooijen (1982) convective rolls
- Schmitt, Rosner & Bohm (1984) convective plumes
- Pidatella & Stix (1986) non-local mixing length theory (Shaviv & Salpeter)

All 3 approaches got similar results!

- low Mach number flow $Ma \approx 10^{-4}$
- nearly adiabatic overshoot region $\delta \approx -10^{-6}$
- steep transition towards radiation zone
- depth of overshoot $\approx 0.2 0.3$ Hp

Problems with this class of models: • Helioseismology sets strong constraints: d < 0.05 ... 0.1 Hp for models with sharp transition

- Radiative heating problem for magnetic flux storage: (Fan & Fisher 1996, Rempel 2002)
 - $\Rightarrow \delta$ < 10 ⁻⁴ required for flux storage

Possible solutions:

- overshoot is more subadiabatic
- overshoot becomes more subadiabatic owing to suppression of convective motions

0.1

0

-0.

-0.2

local

0.68

0.7

r/R

0.72

0.74

to radiation zone

 lower part of CZ already significantly subadiabatic

Solar parameters:

- Re ~ 10¹²
- Pr ~ 10⁻⁸ (Pr = v / κ)
- very small energy flux:
 - $\eta = F / (\rho c_p T v_s) \sim 5 \ 10^{-11}$
- highly stratified: $\rho_{bot} / \rho_{top} \sim 10^{6}$

Numerical simulations:

- Re ~ 100 1000
- Pr ~ 1
- η ~ 10 ⁻³ ... 10 ⁻⁴
- weakly stratified: $\rho_{bot} / \rho_{top} \sim 100 \dots 1000$

What causes the discrepancies?

Two combined approaches:

- Numerical experiments closer to solar parameters:
 - low energy flux
 - smooth transition of rad. conductivity
- · Semi-analytical model:
 - downflow dominated convection
 - low filling factor

Numerical model:

- Pr number of large scale flow is based on turb. viscosity and heat conductivity and is of O(1)
- Turbulent > radiative heat conductivity (ratio of 10⁵ for sun)

· Decomposition of conductive heat flux: $F = -\kappa_{rad} \ grad \ \overline{T} \ - \ \kappa_{turb} \ grad \ T$

Advantages:

- Pr of convection independent of κ_{rad}
- Freedom to choose solar like profile for κ_{rad}
- · Freedom to vary energy flux independent of Pr
- · Possibility to choose very low energy flux

Problems:

- Very long thermal relaxation time owing to low energy flux
- Forced relaxation in the beginning of each simulation

 $r = \lambda \left(1 - \frac{F_{conv} + F_{rad}}{F} \right)$

• Reduction of thermal relaxation time by a factor of 10 ... 100

Influence of Pr on solution: CZ: Change of structure and coherence of downflow plumes

OS: Deceleration of fluid parcels

- > Reduction of buoyancy breaking of a single plume?
- > Thermal adjustment of mean stratification?

Influence of η on solution:

- · Change of Ma number of flow
- Change of effective Re of flow

Both effects difficult to separate in numerical simulation

- easy to change flux by a factor of 100
- difficult to change viscosity by a factor of 100
- \Rightarrow semi-analytical model to disentangle influences

Semi-analytic CZ + Overshoot model:

Assumptions:

- Convection driven by downflows
- Upflow passive (mass conservation)
- \Rightarrow 1D model describing downflow properties
- ⇒ Adjustment of mean stratification until momentum and energy balance fulfilled

Downflow: buoyancy driving, mixing of momentum and enthalpy with upflow region

· large influence on depth of OS

- large influence on sharpness of transition region (only for moderate values of Φ (< 1000)

Conclusions:

- Basic overshoot properties for <u>downflow dominated</u> convection can be understood in terms of a highly simplified CZ-OS model
- Structure of overshoot determined by:
 - > Downflow filling factor at base of CZ (step function ↔ rounded profile)
 - > Mixing properties in CZ (mainly depth)
 - Mixing properties in overshoot region (mainly depth, steepness of transition region)

Solar values:

• Filling factor: 10 ⁻⁷ (no entrainment) ... 0.1 (MLT)

- Mixing in CZ and OS: unknown
- Do downflows reach base of CZ?
 - > num. convection simulations: YES
 - > single downflow simulations (M.P. Rast): probably NOT

What are the next steps?

3D overshooting convection simulations
 > maybe in 20 years

Single plume simulations: > don't solve full problem! (energy transport, plume interaction)

Is there a possible step in between?

Approach from both sides:

- 3D experiments
 - > artificial reduction of downflow coherence by screen in convection zone
 - > artificial boundary condition preferring large scale motions
- Single downflow convection:
 > inclusion of energy flux
- Do merging plumes increase stability?

