

MISPR	Further steps in <u>two-ion</u> fluid simulations
1994	First theoretical evidence of an Ion Composition Boundary (ICB) in 2D simulations of solar wind massloading.
	(The protonopause - an ion composition boundary in the magnetosheath of comets, Venus and Mars; Sauer et al., <i>GRL</i>)
1999 (after MGS)	Improved 2D two-ion fluid model (inclusion of thermal effects) showing the Magnetic Pile-up Boundary (MPB) at the same location as the ICB.
	(The nature of the Martian obstacle boundary; Sauer and Dubinin, <i>Adv. Space Res.</i>)
2001- 2003	Joint Phobos - MGS ISSI workshops: Mars book (Kluwer) + Space Science Review will be published in spring of 2004.
2000	

Summary and conclusion

MISPR

•The multi-fluid model is able to describe essential elements of solar wind interaction with non-magnetized bodies.

•The transition from very asymmetric plasma structures at weak comets to the magnetosphere of Mars with three well developed plasma boundaries (BS, ICB/MPB, IP) has been shown.

•The Ion Composition Boundary (ICB/MPB) at comets and Mars is a new type of plasma boundary which is formed in mass-loaded plasmas. It results from the momentum coupling between the two plasma populations at the "generalized sonic points".

