Remember: how to measure the solar wind ‘

[ The principle of electrostatic andlyzers ]

Profon 3D velacity
distributions for various

Bt wig-v, 1 R e
bytiger
betectors th it o h s cut e

successful particles.

‘Spherical deflection plates with an applied volfage let
harged particles pass if their energy/charge fits,

Quadrispheric plates with several detectors llow
deferr

ermination of one angle of incidence.
Rotation of the detector, e.g, on a spinning
‘spacecraft, allows defermination of the ofher angle of
incidence.
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‘ Two types of solar wind: evidence from Helios ‘ Two different types of solar wind!

1. Fast wind in high speed streams

High speed 400-800 kms!

Low density 3cm3

Low particle flux 2 x 108 cm2 st

Helium content 3.6%, stationary

Source coronal holes

Signatures stationary for long times,

all streams are alike,

The s
fream fronts are strong Alfvénic fluctuations.

Steeper clogep to the syn
asurprise fop Some
Modelers

2. Low speed wind of "interstream" type

- S S Low speed 250-400 kms-!
A = - High density 10.7 cm3
e A e ey N e H"-"°§ plasma measurements High particle flux 3.7 x 108 cm2 s
! s ZoE e during first approach to Helium content  below 2%, highly variable
- perihelion (0.3 AU). Source helmet streamers near current she eft,
- at activity minimum
, Signatures generally very variable,
EE sector boundaries imbedded.
The Parker spiral and the formation of Stream interfaces at high speed stream fronts ‘
Corotating Interaction Regions (CIRs) T

QC\ “O

O with stream interface
© fo strean interfoce Longitudinal speed gradients
of high speed stream fronts,
as measured by Helios
between 0.3 and 1 AU.
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The "Parker spiral”.

The curvature depends strongly 4
on the solar wind speed:

tg a=QR/v

In case fast wind follows slow wind,
a Corotating Interaction Region (CIR) forms, | vz
where the plasma is compressed and deflected | AE




Scheme of the radial evolution of a CIR ‘

‘From stream interface to CIR and shock pair
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observed by Helios even inside 1 AU AE structure known from eclipses. AE
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Latitudinal stream boundaries | [Foneressee] Latitudinal stream boundaries
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M This was our 1976
+20° 3 argument for the
el I C} o solar wind being a
al e
two-state-
-20°: Separation in latitude (°) Phenomenon!
The diffevence sV in proton bulk epeed measured by the two HELIOS probes
as a function of their separation in heliographic latitude be. Each point
vepresents an average over 1° in eolar longitude. The crosses demote cased
with corotation times of less than two dayi
Summarizing our observations of “leading”, *“trailing” and “latitudinal
boundaries, we conclude that fast streams near 0.3 AU exhibit sharp boundaries
Solar wind stream structure, seen nearly simultaneously from 1 AU and in all directions. This finding’ Taken together With (he obscrvation ol mesa-lke
from 0.3 AU (IMP and Helios 1) in early 1975, associated with coronal hole 'PIOMIES O Targe fast streams near 0.3 AU, implies that possibly becatse o
e Note that Heli d th 1"h b d f the fast new critical points developing in highly diverging flows (Kopp and Holzer,
structure. Note that He 'PS passe @ nor; Gl .oun (el © e tas “'F 1976), solar wind emerges from the corona in two different states, a “fast” “'F
stream, while IMP at low latitude did not. AE and a "STow ™~ one. This 1dea will be Tollowed Up n section 5.3 of this paper. AE




The two states of corona and solar wind

Active regions and
streamers let the
.Slow wind" emerge

Coronal holes
produce the
.fast wind"

The corona of sun at beginning activity (1998), viewed by EIT and LAS

LASCO C1/C2, on 1.2. 1996

The corona at activity minimum in early 1996 and its topology:

- there are magnetic multipole structures at mid-latitudes, in addition to the general dipole,
+ these helmets may involve multiple current sheets,
+ the mid latitude loops appear to be very stable in time, i.e., they extend over substantial

longitudes as do the underlying photospheric neutral lines,

+ the near-equatorial helmets vary strongly and are often absent.
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The stream
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streamers close to the sun,
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The equatorial streamer belt

The boundaries of
coronal holes and the
streamer belt, as seen
by EIT and UVCS on
SOHO

wide.

he sun is about one solar di_umeter
everal minimum eclipses-

e streamer belt close 1o 1l

Note that th had already been inferred from s
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‘ See the ballerina dance! ‘

The Sun as a “ballerina”, according to A/fvén, 1977. \A‘IIE

See the ballerina dance!

The Sun and its corona at solar activity minimum
during the Whole Sun Month (WSM) in 1996,
seen by the LASCO €1/€2 coronagraphs on SOHO
and the WSO magnetograph e




The Sun as a “ballerina”

\
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The solar wind made visible

Never seen before:
the ,smoke clouds" near
the equatorial plane are
due to inhomogeneities in
the solar wind, which thus
becomes visiblel

Note further:

* The moving star field,

+ Our milky way which the
Sun traverses right at
Christmas,

+ Alittle comet plunging
into the Sun and
evaporating
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| The 3D solar wind at activity minimum

Ulysses was almost
permanently
encountering fast solar
wind, except from a
narrow, near-equatorial
belt of slow solar wind,
thus confirming earlier
measurements (e.g.,
from IPS, Helios).

Ulysses observations of solar wind speed and
magnetic sector structure, observed during a full
execliptic orbit around solar activity minimum.

wind at different heliomagnetic latitudes,
observed by Helios1/2 and IMP
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R WIND SPEED (Km/sec)

SOLAI

Note in particular:

+ the slow wind "belt" is only 30 deg wide,
« itis asymmetric w.r.t. the ecliptic,

« it widens with increasing activity,

+ the momentum flux density is invariant,
« the fotal energy flux density is invariant
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A major surprise above the Sun's poles \

p (cm™ s sr MeV)

V (km/sec)
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[Ener‘ge‘ric particles

A really puzzling observation in
this context: On his passage to
high latitudes, Ulysses finally left
the streamer sheet, and no CIRs
were seen in the solar wind any
more. But energetic particles
accelerated at CIRs remained!
How can they reach those high
latitudes?

Solar wind, CIRs
e
AE

New understanding of heliospheric rotation

Parker, 1958

Heliospheric Magnetic Field

The classical model




New understanding of heliospheric rotation ‘

Synodic Rotation Period

P (coye)
a\
4N
| N

deq/day

Synodic Rotation Rate

The short term motion of coronal
patterns occurs accurately

New understanding of heliospheric rotation

Green Line (Fe XIV)

Synodic Rotation Period

However, long-lived
coronal patterns
exhibit a uniform

rotation of the
w550 whole corona at
the equatorial
rotation period

(27 .2 days).

2o

Time series: 1 image/day
(24 hs average)

T e according to differential rotation - - -
s 9 L Rotation periods of corotating coronal features,
ed from EI'T' FeXIl images (1-14 April 1997) by N
Getermining (e longitude displacement of the pattern afler Yie determined from LASCO-C1 data
a given tme nterval X
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New understanding of heliospheric rotation

Coronal Magnetic Field at High Latitude:

The new "Fisk" model.
It involves differential
rotation, the inclined solar
axis and reconnection.

(B

New understanding of hel

iospheric rotation

Heliospheric Magnetic Field
Fisk, 1996

In this scheme, field lines
emerging at high
latitudes can reach down
to low latitudes, where
energetic particles might
be injected.
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The ,slow" solar wind,
: - ]
at low latitudes
o ]
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Helios at 60 Rs

0
*/R_sun 60

Speed profiles of the slow solar wind,
as determined from ,leaves in the wind"

Note:

coherent outward flow starts only at about 3 R
the profile is consistent with in-situ speed profiles
obtained by Helios between 60 and 210 R,

‘ The solar wind carries away angular momentum ‘
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The Sun will not slow down much in
the next few million years fo come...




The ,fast" wind: full of Alfvén waves

‘ The ,fast" wind: full of Alfvén waves
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The ,fast”™ wind: full of Alfvén waves ‘ ‘ High speed streams: M-regions!
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x0 : . * st AR Often ignored: High speed
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(moderate) geomagnetic
activity:
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By’ LU L7 i oy They are most prominent in the
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The ,fast" solar wind,

from high latitude coronal holes

intersections

The SOHO instruments have shown, that the fast solar wind from coronal
holes emerges from the network boundaries, in particular from their

The ,fast" solar wind,
from high latitude coronal holes

e T T T T T

(b) Ve O VI f{’

{a) Vi H I Lya (c) Outflow Velocities

'
)

VELOCTY (km 3

protan mass
flux conservation

40 15 20 25 30 35 40
/Ry T/ Ry

UVCS on SOHO measured the proton and 0% ion thermal speeds in a coronal
hole. For reference, the electron thermal speeds are shown as well.

eration of Oxygen
otron heating, at

tial heating and accel
the pronounced preferential heating ant

Noi:r;\ r‘esppec’r to the protons, thus indicating ion CYCJ
! least in case of the fast solar win




The ,fast" solar wind,
from high latitude coronal holes
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CDS/SUMER: profiles of electron temperature from EUV line-ratios
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‘ The two basic states of the solar wind

Differences  slow wind fast wind
Speed faster
Density higher
Helium content lower, variable constant 3.6%
Nature transient .quiet" wind
Angular momentum almost all almost none
Sources above active regions coronal holes
Source temperature hot cold
Acceleration onset > 3R close to surface
Acceleration done > 10 R, 3R,
Ton cyclotron heating no evidence strong evidence
Vo>V, no yes
Alfvén waves none much
FIP effect strong none
Similarities momentum flux density

total energy flux density

Apparently, there are two basic types of solar wind,

Where the heliosphere ends
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Figure 3. Schematic illustration of the large-scale structure of the heliosphere.
Surrounding the solar wind termination shock is the heliopause, which forms the
interface between solar and interstellar plasma, and a possible “bow shock” that
may be located beyond the heliopause. The present positions of the Pioneer and
Voyager spacecraft are indicated. The termination shock is assumed to be 67 AU
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1P Shock

Blast wave radio source

> , el
> \ WIND
radio emission
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Corona N atf, & 2f;
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n(em) =
a2 3 R(AU)2 1 MHz
1P plasma
density T frequency observing
nem® | drifting frequency
radiation|

Shock Front 30 kHz

0.025 AU 075 AU
heliocentric distance (AU)—=

‘Where the heliosphere ends

FREQUENCY, Hz
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HELIOSPHERIC 2-3 kHz
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| 10 100 1000
R, ASTRONOMICAL UNITS
Figure 10 ic2-3 i eved to be in the

vicinity of the heliopause by an interplanetary shock wave moving outward from

the Sun. The radiation is beieved to be produced by & two-step process involving

Langmuir waves generated by an electron beam accelerated by the shock.
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Radio signals from the heliopause!
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Basic questions about the solar wind still
waiting tfo be answered

How is the corona being heated?
How is the slow wind released?
What heats and accelerates the fast wind?

Why these sharp boundaries?

Spatial scales of the crucial physical processes?
Dif ferential rotation, rigid rotation, “Fisk effect"?
Solar wind dropouts and other strange escapades?
Abundance variations and FIP effect?
Where does the heliosphere end?

?
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3. Solar wind and corona in 3D

+ Stream boundaries and interactions

+ The 3D heliosphere at activity minimum

« Puzzles at high latitudes

+ A new understanding of heliospheric rotation
+ The two states of the solar wind

D
[ma




