Vorlesung "Physik des Sonnensystems " Univ. Göttingen, 2. Juni 2008

Konvektion und solares Magnetfeld

Manfred Schüssler Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau

Convection & magnetism: closely related

Outline

Basic physics of convection
 Numerical simulation of convection
 Overview of solar magnetism
 Surface magneto-convection
 Deep convection zone field & dynamo

The solar convection zone

200 Mm thick layer in turbulent motion

 Velocities range from 100 m/s (bottom) to 10 km/s (top)

 Energy flux nearly completely transported by convective motion

What is convection?

Flow driven by thermal buoyancy

Convective instability

→ Viewgraphs...

Granulation: Solar surface convection

Solar granulation

Granulation und laboratory convection

Granulation as a convective phenomenon

Supergranulation

Supergranulation and magnetic field: the Ca⁺ network

Granulation, sunspots, & small-scale magnetic field

'Realistic' solar simulations

- elaborate physics: partial ionization, radiation, compressible, open box, transmitting boundaries, spectral line diagnostics (Stokes profiles)
- + : approximation to solar conditions
- + : direct comparison with observations
- : computational restrictions (box size, resolution)
- Reynolds numbers much below solar values

Approach: Local simulation box including photosphere

radiative energy transport

- Boussinesq model
- Rayleigh number: 5 10⁵
- 3D, 512×512×97 mesh
- wide box, aspect ratio: 10
- "(meso)granulation"

Cattaneo & Emonet (2001)

The MURaM code: equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\ \frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} + \left(p + \frac{|\mathbf{B}|^2}{8\pi}\right) \mathbf{1} - \frac{\mathbf{B}\mathbf{B}}{4\pi}\right) &= \rho \mathbf{g} + \nabla \cdot \underline{\tau} \end{aligned}$$
Continuity equation
$$\begin{aligned} \frac{\partial e}{\partial t} + \nabla \cdot \left(\mathbf{u} \left(e + p + \frac{|\mathbf{B}|^2}{8\pi}\right) - \frac{1}{4\pi} \mathbf{B}(\mathbf{u} \cdot \mathbf{B})\right) \\ &= \frac{1}{4\pi} \nabla \cdot (\mathbf{B} \times \eta \nabla \times \mathbf{B}) + \nabla \cdot (\mathbf{u} \cdot \underline{\tau}) + \nabla \cdot (\chi \rho \nabla \frac{e}{\sigma}) \\ &+ \rho(\mathbf{g} \cdot \mathbf{u}) \quad Q_{rad}, \qquad Q_{rad} = -\nabla \cdot \mathbf{F} = 4\pi \rho \int \kappa_{\nu} (J_{\nu} - S_{\nu}) d\nu \end{aligned}$$
Energy equation
$$\begin{aligned} \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{B} - \mathbf{B}\mathbf{u}) &= -\nabla \times (\eta \nabla \times \mathbf{B}) . \qquad \frac{dI_{\nu}}{ds} = -\kappa_{\nu} \rho (I_{\nu} - S_{\nu}) \end{aligned}$$

Induction equation

Radiative Transfer Equation

- realistic simulation
- ionization, rad. transfer
- 3D, 576×576×100 mesh
- 6 Mm × 6 Mm × 1.4 Mm
- granulation

Vögler et al. (2005)

Emerging intensity

• realistic simulation

- ionization, rad. transfer
- 3D, 576×576×100 mesh
- 6 Mm × 6 Mm × 1.4 Mm
- granulation

Vögler et al. (2005)

Vertical velocity (red: down, blue: up)

Upper photosphere

"Mesogranulation" ?

Simulated long-lived convective downflows

Virtual "corks" are carried by the horizontal flow. They accumulate in downflow regions.

Averaged energy fluxes in a simulation of solar convection

Stein & Nordlund, 2000

Simulation and observation

Simulation (original)

Simulation (smoothed)

Observation

Change of downflow topology

down

up

Stein & Nordlund, 1998

Simulated convection in a solar-like spherical shell Miesch 1998

Magnetic fields on the Sun

A large sunspot group

What is the nature of sunspots?

Smoke clouds ?

Holes ?

Tornadoes ?

The magnetic nature of sunspots

Sunspot with spectrograph slit

Magnetically split spectral line

Magnetic variability

Full-disk magnetogram

Magnetic patterns on the rotating Sun

Hot plasma draws magnetic field lines...

Hot plasma draws magnetic field lines...

The solar magnetic field...

SIL

... continues into interplanetary space.

Its variability in the course of the 11-year cycle and its long-term modulation...

- affects cosmic rays,
- perturbs the terrestrial magnetic field.

G-band observations

KIS/VTT, Obs. del Teide, Tenerife

G-band observations

Dutch Open Telescope, Obs. del Roque de los Muchachos, courtesy P. Sütterlin

What is magneto-convection?

Interaction between convective flows and magnetic field in an electrically well-conducting fluid

High Reynolds numbers: nonlinear dynamics, structure and pattern formation

Interference with convective energy transport

Regimes of solar magneto-convection

■ increases: quiet Sun \rightarrow plage \rightarrow \rightarrow umbra

horizontal scale of convection decreases

convective energy transport decreases

T. Berger, SVST 12 May 1998, Obs. del Roque de los Muchachos Adapted from a figure by Thierry Emonet, Univ. Chicago
Good electrical conductors : "frozen field"

Initially field-free volumes remain field-free

Magnetic flux through a given volume remains constant

"Frozen field" in the Sun

Magnetic flux is transported to the downflow regions of the convective flow patterns

"magnetic network"

Simulation of flux expulsion (Weiss, 1966)

b: final state for Re_m = 40
a: streamlines of the fixed velocity field
c-j: time evolution for Re_m = 1000

- evolution of an initially vertical magnetic field under the influence of a fixed flow field
- kinematic, 2D
- the magnetic flux is expelled from the area of closed streamlines and concentrated in narrow sheets

Flux expulsion and intermittency N.O. Weiss (1964): *first simulations*

(Hupfer, KIS Freiburg, 2001)

Flux expulsion and intermittency N.O. Weiss (1964): *first simulations*

(Hupfer, KIS Freiburg, 2001)

$B_0 = 200 G$ (plage): time evolution

horizontal cuts near τ =1 6000 km × 6000 km × 1400 km 576 × 576 × 100 grid points

vertical magnetic field

vertical velocity

$B_0 = 200 G$ (plage): time evolution

Vertical magnetic field component

6 Mm

$B_0 = 200 \text{ G} \text{ (plage): time evolution}$

Brightness

6 Mm

Convective intensification

 Flux advection by horizontal flow (flux expulsion)

• Suppression of convection, cooling and downflow

• Evacuation, field intensification

The magnetically variable Sun

11-year cycle of magnetic activity and surface flux

The 11-year solar cycle

Solar magnetic activity varies with a period of roughly 11 years. Long-term variations are superposed upon this cycle.

¹⁴C: Solar activity back to AD 1000

Butterfly diagram

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Hale's Polarity Law:

The polarity of the leading spots in one hemisphere is opposite that of the leading spots in the other hemisphere and the polarities reverse from one cycle to the next.

Where do the surface fields come from?

• Tube expansion and decreasing field strength

7

•Eruption at the solar surface

•Formation of a bipolar sunspot pair/group

9

Generation of magnetic flux...

requires an electrically conducting medium
 plasma (ionized gas)

... requires fluid motion for induction

- convective flows
- (differential) rotation

how is the field maintained against dissipation?
 (self-excited) dynamo process

The induction principle

Conductor moving in a magnetic field perpendicular electrical field and force electrical current new magnetic field Lenz's rule! (no perpetuum mobile)

A simple dynamo

Initially weak "seed field"

- Rotation induces electrical field between axis and edge
- → Current closed by wire
- Current generates a magnetic field which amplifies the seed field
- → Sun: no isolated wires

→ "homogeneous dynamo"

Local dynamo

Vögler & Sch. 2007

Differential rotation generates azimuthal (toroidal) magnetic field

Internal rotation of the Sun as determined by helioseismology

Convection zone rotates similar to surface Core rotates nearly rigidly Steep transition at the bottom of the convection zone; width ~2% R_{sun} Region of strongest shear → Dynamo!

Internal rotation of the Sun as determined by helioseismology

The solar dynamo (1)

Dipol field in the convection zone

Winding up of the field by differential rotation → strong toroidal field

The solar dynamo (2)

Rise and eruption of magnetic flux tubes → sunspots

Twist of the erupting field by Coriolis force → reversed dipole field

Twisting of a field line in a rising & expanding convective flow by the action of the Coriolis force (Parker, 1955)

Reversal of the meridional field

Reversal of the meridional field

B = 10 Tesla

The end...

