

DFVLR-GSOC 803 MISSION HE N-90 DS	1 OBERPFA LIO5=A S= 62	FFENHOF 79 S: ctime12	EN GEF 2 1314] 1 15143	MAN S ***AU St23 2:13.9	PACE O SGABE B/R 68	PERATI GEPUFF 128	ON CEN ERT+++ FM 2	TER	21. 4 IM 3-0	74 GM	ат 15H 1 18	ом в ГМТ	S 159 34: E FB/FF	45 XP1-NO	PA 5	GE-110.	L.	
STATUS:	PLA NDM	TIME	0 00	27147	.562	HEM1	01-0N	02-0F	F 11A	-0N	12-0N	118-	ON	w5 13-	UFF			
INITIAL DATA CW: 5	91-0 1 99-15 1	1110000	111100	00 00 00 10	001111	01011	000 10	001111	010110	00 111	10000	100010	00					
1D ions	EN1-16 EN17-32	22 136	18 58	10G 50	30 ₁₈	12 17	72 20	21 19	20 11	14 31	20 18	17 18	11 18	13 21	13 27	38 32	128 10	
ITA INTEGR.	EN1-16 EN12-32	2 304	; 100	2 66	0 27	0 10	3 7	1 6	1	ů 1	3 2	4 1	1	4	11 1	184 7	672 1	
128	A21 A22	2	258	320 152	352	184 104	50 62	19 22	11 10	्र	D į	0	2	1	1	1	0 0	Y
electrons	AZ3 AZ4		104	160	96	288	13	31	8 20	12	1020	100		0 0 701	9	0 0	0 0	ţ
đ.	A26 A27 A28	544 584 384	768 406 368	864 416 384	704 256 336	384 136 248	168 64 100	44 21 23	20 15 17	12	12 10 6	10000	3	1 0 0	1000	0	000	ľ
I14/3 ·	TIAX AT I	6810	6L3 -	210					e					-	. • 2			1.6
3D ions	AZ8 AZ9 AZ90	EL3 0 0	EL4 1 1	ELS 2 0	EL6 4	617 0 0	613	EL4 0 10 0 30	813 3(EL6 4 19 10	£1.7	EL 2 1	3 E 21 13	15 84 80	118 123 128 112	16 E1 16 48 38	7 2 6 2	2
r = 0.97 AU	AZ12	è	ô	0 6H17	ò	ů.		ă ĉ	ENT	č		6	0	1	0 419	1	0	
$v_p = 525 \text{ kms}^{-1}$	A28 A29 A210 A711	4 6 6 5	22 22 54	12 19 54	24.1	1		1 2 2 11 1 10	21	4		0 1 0	1	11	0 14 4 3	3 7 1 8	0000	
$n_p = 3,9 \text{ cm}$	A212	ő	Ő	0 EN20	â	õ		0 1	ENŻ	i		0	ō	Ó E	122	ò	0	4
¹ p - 180 000 K	AZR AZ7 AZ10 AZ11 AZ11	N N O O	1 5 0 1 0	4 10 10 0 0	1210	0 0 0 0		6 6 1 1 0 1 0 6				0 0 0	0	0 0 7 0 0	0 1 0 0 0	0 1 1 0	0 . 0 0 .	
			÷										<u> </u>		1			
A prin	tout o	f He	lios-	E1 I	raw	date	a											
														IMP	RS Jur	ne 2003	A	É

4EL TOS 1 1977	PARAMETER DER P	OSITIVEN KOMPONENT	TEN IM SONNENWIND			
BAND: 1:118 JUB:HD5306 12	02.78		5) (DDDT0)/////	11.4 TO UNE NT	BROTONEN MODE	09811
PROTONEN	ND VA	TH NH HZ MUT	THZ ELEVAT VEL	1 VP	TP NP	AS HSE
KM/5 1000	COMPRED KM25 10	00K CM##-3 GRAD	OBOX GRAD 1000K	K M/S	1003K CHN+-3	AU GRAD
. 29 18 3 46 * 487.0 99	. 46.60 × 0.0	0, 0.0 × 1.97	163. 9.19 151.	,31188 81188 485.7 - XTIAX 81188 481 4	121. 47.09 7 512.1/3.N	.951 323.1
29 10 4 27 4 465 4 40	45 14 X D.D	0. 0.0 * 2.23	148. 8.58 132.	*116× ×118× 483.4	117. 47.34 + 512 1 3/N	.951 323.1
29 10 5 48 × 488.5 152	50.23 × 0.0	0.0.0 * 1.83	168. 8.57 283.	*JINY *118* 486.7	576. 51.28 * 512 1/3/N	.951 323.1
29 10 6 20 × 482.8 128	. 47.86 × 8.0	0.0.0 * 1.42	167. 7.81 155.	,×∫1Aż ×118× 483.7	137, 48,62 × 512 1/3/N	.951 323.1
29 10 7 9 × 486.2 135	48,10 5 0.8	0. 0.0 × 1.57	164, 7.87 163.	,#116# #118# 483.8 	128. 48.26 * 512-1737N 157. 46.36 * 51271737N	.951 323.1
29 18 / 48 * 487.6 101 20 10 8 20 X 489 7 157	48 97 X 0.0	0.0.0 * 1.17	193. 7.66 201.	¥116* %1:6* 408.2	193. 51.20 ¥ 512/1/3/N	.951 323.1
29 10 9 10 × 481,9 183	43.60 × 0.0	0.0.0 × 2.14	187, 7,18 191.	*118× *118× 478.7	186. 43.87 * 512/1/3/N	.951 323.1
29 10 9 50 × 483.2 145	, 45,84 × 0.0	0.0.0 × 2.67	177, 7.73 105.	.*IIA* *I18* 479,7	147. 44.87 × 512/1/3/N	.051 323.1
29 10 10 30 4 482.6 175	, 44.89 × 0.0	0,0.0 * 2.78	191. 8.07 181.	x110x x110x 4/9.4	140 52 86 x 512/1/3/8	.951 323.1
29 10 11 11 * 462.1 141	. 44.55 × 0.0	a. a.a × 2.91	192. 8.63 156	*116* *118* 479.7	168. 44.76 × 512/1/3/N	.951 323.1
29 10 12 32 × 490.0 158	. 44.51 × 0.0	0. 0.0 × 2.01	218, 0.64 149	*116* *118* 488.6	181. 44.57 × 512/1/3.N	.951 323.1
29 10 13 12 × 489.5 171	. 62,18 × 496.5	325. 8.985* 0.84	193. 10.16 182.	,*11A* *118* 407.7	154, 59,77 * 512/1/3/N	.951 323.1
29 10 13 53 × 487.5 151	50 86 X 0.0	0.0.0 * 1.53	190, 10,23, 192, 198, 9,69, 201,	.=]1A* ¥I18* 485.5	155, 49,52 ¥ 512/1/3/N	.951 323.1
29 10 14 33 ~ 466.0 176 29 10 15 14 × 462.0 129	. 21.16 × 0.0	0.0.0 × -0.60	162. 5.91 4126.	.184 ×011× ×A11×	132. 20.63 # 512/1/3/N	.951 323.1
29 10 15 54 × 477.8 134	. 20,28 × 0.0	0.0.0 × -1.42	144, 7.07 115	*IIA* *I15* 480.2	131, 19,41 * 512/1/3/H	.051. 353.1
29 10 16 35 * 486.0 129	. 21,77 × 0.0	0.0.0 * -1.99	196. 0.26 199	.*[]A# #[]8# 485.2	155. 21.59 * 512/1/3/N	.951 323.1
29 10 17 15 * 475.9 142 20 10 17 66 * 404 0 131	. 25.37 * 0.0	0. 0.0 × -2.16	281, 9.65 165	.×[]8× *[]8× 497.;	131: 22.22 × 512/1/3/N	.951 323.1
29 10 18 36 # 492.4 124	. 24.13 * 0.8	0. 0.0 × -1.05	173. 10.58 157	*118* *118* 408.5	127. 23.16 * 512/1/3/N	.951 323.1
29 10 19 17 * 496.B 195	. 27.55 * 718.8	1887. 0.059× ~1.98	291. 11.81 219	.×114× ×118× 494.7	195, 26,46 × 512/1/3/H	.951 323.1
29 10 19 57 × 500.2 154	. 34.86 * 0.0	e. e. o × o.o	0, 12,42 314	*110* *118* 490.2	155. 34.75 * 512/1/3/8	951 323.1
21 18 473.7 38	. 38.83 × 572.2	750. 0.685× 5.36	39, 5,91 44	*11A4 *11B* 470.3	.25. 48.85 * 512/1/3/h	.851 323.1
Th 21 59 * 478.1 16	. 29.54 × 663.9	255. 0.238≭ 4.68	35. 6.12 22	.×11A* ×118× 465.4	27. 28.41 × 512/1/3/N	.851 323.1
D 22 39 × 481.9 16	. 16,75 % 462.6	53, 1,504× 5.04	33. 5.35 20	.X110X X110X 476.3	13. 19.33 * 512/1/3/N	951 323.1
23 20 × 458.0 14	12 91 3 461 6	73. 0.728* 0.51	29. 1.81 33	.×11A× ×110× 470.9	16, 21,16 * 512/1/3/N	.951 323.1
29 10 24 41 * 472.7 . 14	. 30.11 × 480.0	45. 2.768× 0.96	16. 1.53 21	XIIAX X118X 474.2	25. 14.81 ¥ 512/1/3/N	.951 323.1
29 10 25 21 * 486.7 10	. 30.78 * 495.0	322, 0.143× -0.62	8. 1.69 15	.×11A× ×11B× 480.3	32. 7.03 × 512/1/3/N	.951 323.1
29 10 26 2 * 473.5 12	. 15.51 × 479.5	51. 1.299× 0.68	30 1.90 22	X116X X118X 401.0	13. 18.88 * 512/1/3/N	.951 323.1
25 10 27 23 × 471.3 11	. 16.71 # 475.7	61. 0.454× 1.02	10. 1.89 19	.×11A× #11B* 475.5	23. 6.21 * 512/1/3/N	.951 323.1
29 10 28 3 × 475.0 20	. 3.94 × 460.9	86. 0,056× 2,37	33. 2.62 37	.*11A* #118* 470.4	10. 18.86 * 512/1/3/N	.951 323.1
29 18 26 44 ¥ 471.6 10	, 14.75 × 478.1	74, 0.113× 2.09	6, 2,19 22	.×11A× ×11B* 467.7	23, 8,52 × 512/1/3/N	.951 323.1
28 10 28 24 × 478.1 22 29 10 38 5 × 478 5 11	. 13.01 × 403.0	92, 0,051* 1.81	7, 2,41 22	*11A* #118* 465.5	14. 8.44 × 512/1/3/N	.051 323.1
29 10 30 45 × 472.9 28	. 3.07 × 460.9	76. 0.085× 1.93	33, 2.41 36	.*IIA* *IIB* 471.4	13. 21.02 × 512/1/3/H	.851 323.1
28 10 31 26 * 469.2 13	. 14.86 × 477.6	101. 0.038× 1.29	12. 2.47 25	.*[1A* *[1B* 466.9	25. 10.00 ¥ 512/1/3/N	.951 323.1
29 10 32 6 ¥ 466.8 27	. 12.55 × 464.8	68, 0.361× 1.97	32. 2.95 48	.*11H* #11B* 469.4	17. 27.48 × 512/1/3/8	051 323.1 051 323.1
29 10 32 4/ 4 405./ 15	. 46.88 * 651.2	140. 0.141* -1.42	18, 2,27 34	*118* *118* 475.1	16. 47.38 × 512/1/3/H	.851 323.1
29 18 34 8 * 477.3 26	. 15.22 * 473.8	160. 0.179* -1.48	32. 3.64 47	.#11A* ×118* 480.4	21. 35.57 ¥ 512/1/3/H	.951 323.1
29 10 34 48 × 487.0 16	. 26.01 * 666.4	367. 0.205* -1.61	17. 2.98 44	.*]1A* *[1B* 484.1	26. 40.77 × 512/1/3/N	.951 323.1
29 10 35 29 * 462.1 22	. 24.69 × 685.0	400.0.485* -2.25	41 2.49 68	.**********************************	26. 28.60 × 512/1/3/N	.951 323.1
29 10 36 50 × 501.0 18	. 11.12 × 669.2	594. 8.344× -4.69	25, 4,44 61	*11A* *118* 490.6	16. 30.67 * 512/1/3/H	.851 323.1
29 10 37 30 × 484.4 22	. 21.83 × 676.8	743. 8.697× -3.07	33. 3.26 53	.*IIA* #IIB* 479.8	22, 38,63 * 512/1/3/N	.951 323.1
29 10 38 11 × 469.6 19	. 19.40 × 673.2	594, 0,715× -0.05	35. 4,04 43	. #118# #118# 456.2 . X116X X116X 484 5	24. 40.53 × 512/1/3/N 28. 20.84 × 512/1/3/H	.851 323.1
-29 10 39 32 * 479 5 21	42,20 × 708.3	325. 0.789× -2.87	21. 2.28 35	.*IIA* *I18* 484.3	16, 55.72 * 512/1/3/N	.951 323.1
29 18 40 12 × 473.3 28	. 23.58 × 677.7	318. 8.788* -1,42	22. 4.20 46	.×11A× ×11B× 472.2	18. 44.20 × 512/1/3/N	.951 323.1
1	and the second second second					
Calar	wind in a	anomaton	lata fram 1	Jolian E1 T	la/T1h	
	wind ion i	Jurumerer d	I mont bibl	TENOS E1-1.		

DFVLH-GSOC 803 MISSIO4 HE N-90 DS	1 DBERPFAI LIOS-A S- 62 Si	FENHOF 79 5: 71ME12	EN GE 2 1314 4 1514	RMAN S ***AU 3:23 2:13.9	PACE O SGABE B/R 68	PERATI GEPUFF 128	ON CENT ERT+++ FM 2	ER OM	21, 2,	.79 GMT	15H 18	OM BS	159M5 : EXP1 /FF=	-NOR 1/ 5	PAGE-NU.	ιų
INITIAL DATA	1-8 1	110000	01101	000 00	111001	11110	000 100	01111 0	101100	1 1111	0000	0001000		13-077		
1D ions	20115 1 2011-36 EN17-32	101010 22 136	11110 18 58	000 10 10 50 -	20111 D	01011 12 17	201 111 22 20	10000 1 21 19	20 11	16 16 31	20 20 18 -	17 18	11 18	13 21 a	3 38 7 32	128
ITA INTEGR.	EN1-30 EN17-32	304 304	100	46 46	27	10	7	ł	5	1	2	i	1	0	1 184	472
	A21 A22	0	288 176	320 152	352 152	184 104	56 42	19 22	11 10	्रव्य	TL		2		ن ز اما معرف	0 11 0
electrons	AZ3 AZ4 AZ5	1 0 1 3207 1 22	184	160	96 480	50 288 4222	13 100 2124	31	20 77 2	12	1 N	e ele	CTro	on "S		0 0 16
đ.	A26 A27 A28	344 384 304	768 496 368	864 416 384	704 256 336	384 136 248	168 44 100	44 21 23	20 15 17	12 4 3	12 10 6	12	3	1 0 0	1 0 0 0 0 0	0 0 0
I14/3	HAX AT:	6814	81.9	4210 EN14					E 1415					EN16		
3D ions	428 429	EL3 0	EL4 1	815 0 2	EL6 0 4.	EL7 0	6L3 0	ELA 10 38	ELS 11 30	EL6 4 19	EL7 2	EL3 21	EL4 13 84	615 23 128	616 E	17 2 0
HELIOS 1	AZ10 AZ11 AZ12	0 0 0	0	0	ů o	ů 0		12	0	10 2 0	0	13	19	26 0	28 11	9
r = 0,97 AU $v_p = 525 \text{ kms}^{-1}$	428 A29 A210 A711	4 8 8 9	32 22 94	6H17 12 19 54	5 88 24	1	1	2	8818 9 21 17 2	1 0 4 5	0 1 0 2	1	7 11 5	EN19 0 13 0	3 7 1	0
$n_p = 3,9 \text{ cm}^2$	4212	ē	ġ	6 5 N 2 O	ġ	ě	Ô		6 6 x 2 1	ō	ō	Ģ	ě	ENŻŻ	ò	ě
p = 180 000 K	AZ8 AZ9 AZ10	2 2 8 8	1 5 0 1	4333	12	0 0 0	4 1 0	0 2 1 0	13	0 0 0	0.0.0.0	0 0 0	0	9 2 0	0 1 1	0 0. 0
	4212	0	. Ó	ò	ê	Ģ	0	ð	ò	ò	Ô	Ŏ	ć	ŏ	ē	ě
A prin	tout o	f He	lios	-E1 i	raw	data	1									X

0:10:46 ELOCK 19548-19556 SPIN 17143.- 17143. TIME: 1 SFIN(5) IN NORM-MODE, MLC:9360/96CE DAY: 73 HIS C7 114 272. 280. 268. 72. 38. at encounter 200 200 368 576 1338 M21 5. 16. 3. 0. 176. 152. 80. 622. 28. 117 448. 1408. 2436. 7936. 2560. 152. 152. 152. 152. 152. 152. 152. 152. 152. 152. 152. 152. 152. 152. 1408. 152. 2. 34. 160. 44. 23. 6. 72. 736. 10208. 26624. 2560. 216. 216. 1. 6. M20 0. 1. 248. 36. 12. 14. 32. 44. 50. 0. M1B 160 512 1920. 23552. 1660. 48. 23. 0. F125 h16 188. 256. 152. 68. 32. 26. 21. 10. 21504 196432 220037 220037 210037 210037 210037 210042 21064 21064 21064 21064 21064 21064 21064 21064 21064 21064 21064 21064 21064 21064 20060 alizz 72. 58. 576. 1. 5. 6. 17. 7. 1. 176 46 16 Tony Neier Éd flelles M22 1. 1. 1. 3. 1.
 #24

 7.

 8.

 20.

 25.

 19.

 26.

 12.

 #28

 216.

 400.

 1060.

 544.

 608.

 61.

 13312.

 1364.

 64.

 20.
Goldstein 111. 115. 28. 40. 729. 608. 2432. 1230. 768. 128. 148. 540. 128. 128. 128. 128. 129. 129. 129. 149. M26 89. 124. 8. 5. N32 6. 19. 60. 100. 320. 544. 2151. N39 (130) (131 1280. 352. 30. 136. 16. 9. 7. 2. M33 240. 2304. 11. 1. 32. 48. 168. 336. 256. 40. gotrup. 44. 104. 1088. 336. 368. h n42 160. 400. 200. 64. n43 640. 288. 576. 400. 1408. 128. 216. 60. 62. 54. 21. 23. 25. 56. RAAM Ül Mucia Nelgebra Ion mass spectrum raw data at comet Halley, obtained by the Giotto IMS-HIS instrument Æ IMPRS June

