

Lectures for the IMPRS June 23 to June 27 at MPAe Lindau Compiled/organized by Rainer Schwenn, MPAe, supported by Drs. Curdt, Gandorfer, Hilchenbach, Hoekzema, Richter, Schühle

... the next 45 Minutes

- The Magnetic field
- Magnetometers: Torsional Magnetometer Fluxgate-Magnetometer Searchcoil Magnetometer
- Magnetometer Calibration
- Magnetic Cleanliness

The Magnetic field

The Magnetic field Maxwell Equations					
Name or Description	SI				
Faraday's law	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$				
Ampere's law	$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$				
Poisson equation	$\nabla \cdot \mathbf{D} = \rho$				
[Absence of magnetic monopoles]	$\nabla \cdot \mathbf{B} = 0$				
$\begin{array}{c} \text{Lorentz force on} \\ \text{charge } q \end{array}$	$q\left(\mathbf{E}+\mathbf{v}\times\mathbf{B}\right)$				
Constitutive relations	$ \begin{aligned} \mathbf{D} &= \epsilon \mathbf{E} \\ \mathbf{B} &= \mu \mathbf{H} \end{aligned} $				

The Magnetic field Horizontal and Vertical components

Declination

Inclination

Magnetometers

Magnetometers

Design Criteria for s/c Magnetometers

- Long term Stability
- Range (SW, Planetary fields)
- Resolution (ADC)
- Vector Rate, TM-Budget
- Filters (Aliasing, Order, Cut off)
- Commanding
- Power & Mass (Size)
- Position

		<u>Over</u>	view		
Direction	Sci	alar		Vector Components	
Mechanical	Optical Pumped	Atomic Constants	Optical Pumped	Mechanical	Electrical
Compass	Scalar-He	Proton-Mag.	Vector- He	Torsional Mag.	Fluxgate
		Overhauser		Field-Balance	Magneto Resi
					Hall Senso
					Searchcoi

Torsional Magnetometer The z-Component of the Gough-Reitzel Magnetometer

Torsional Magnetometer Angular Momentum Balance for the z-component

The x-axis is aligned with the wire, the z-axis is vertical, and Y completes the system. Thus the angular momentum balance equation reads:

$$M \cdot H_z - D \cdot \alpha = 0$$

where M is the magnetic moment, H_z the vertical component of the field, D the torsional module, and \odot the torsional angle It follows

$$H_z = \frac{D}{M} \alpha$$

Calibration determines D/M. Similar equations for H_X and H_y .

Torsional Magnetometer Characteristics

Weight: Power: Operating period: Sampling: Resolution: Dynamics range: 10 kg 40 mW 70 days 0.2 vectors/s 1 nT 1500 nT

Fluxgate - Magnetometer (FGM) <u>Classification</u>

- Saturated-Core-Magnetometer
- Vector measurements possible
- No absolute measurements
- Lightweight, compact construction
- Low power consumption
- Qualified for space applications

Fluxgate - Magnetometer (FGM) Characteristic Curve, Excitation and Output Voltage

- Characteristic curve: $B(H(t)) = 3 H(t) - H(t)^3$
- Excitation: $H(t) = H_{ext} + h \sin(\bullet t)$
- Induced voltage at the secondary coil: U_i ^{**} $dB/dt = 3 h (1 - H_{ext}^2 - 1/4 h^2) \bullet \cos(\bullet t)$ $-3 H_{ext} h^2 \bullet \sin(2 \bullet t)$ $+3/4 h^3 \bullet \cos(3 \bullet t)$

Fluxgate - Magnetometer (FGM) <u>Functional Principle: Summary</u>

- Non-linear magnetization curve is driven into saturation by periodic excitation (f)
- External field $\underline{H}_{ext} \mathbf{0} (2f)$
- Lock-in (2f), PSD, Integration $\rightarrow \langle U_{2f} \rangle^{"B}_{ext}$
- Feedback using -< U_{2f}> Zero field and reduction of non-linearities
- Symmetric core excitation U DC-offset reduction
- Pulsed excitation U less power consumption

Fluxgate - Magnetometer (FGM) Sensor Design

Problem:

Decoupling of small 2nd harmonic from the excitation signal

Solution:

Suitable sensor geometry for suppression of odd harmonics

Fluxgate - Magnetometer (FGM) Examples 3 Axes CLUSTER FGM Sensor

Fluxgate Magnetometer (FGM) Characteristics e.g. ROSETTA

Weight (sensor): Power: Operating period: Sampling: Resolution: Dynamics range: 30 g 500 mW 15 years 20 vectors/s 0.04 nT 16000 nT

SearchCoil - Magnetometer Classification

- Induction-Coil-Magnetometer
 - U AC-field measurements only
- Frequency spectrum mHz ... MHz
- Vector measurements with 3 orthogonal coils

SearchCoil - Magnetometer Functional Principle

- Induction law: $\operatorname{rot} \underline{E} = d\underline{B} / dt$
- Induced Voltage: $U_{ind} = \underbrace{\times \underline{E}} \cdot d\underline{s}$ • $U_{ind} = -n \quad d \quad (F \quad B_{pol})$
 - $U_{ind} = -n \ d \left(F \ B_{\gamma}\right) / dt$
- Harmonic fields $B = \vec{B}^* \sin(\bullet t)$ and constant area F

$$\bullet \ \bar{U}_{ind} = + n \ F \bullet \ \bar{B}$$

SearchCoil - Magnetometer Characteristics

•Voltage rises linear with frequency & amplitude

•Signal in case of

- * rotation of coil in constant field
- * fixed coil in time varying field
- * temporally varying coil geometry (Temperature!) in constant field

<u>Result:</u> Interpretation in unknown field is difficult if magnetometer (s/c!) is in motion

<u>Real Sensol 3-Over view</u>							
Application	Axes	Wdgs.	Frequency Range [Hz]	Dimensions x r [cm]	Sensitivity [OV/nT		
Micro- pulsations	3	200000	1m10	200 x 1.25	760		
Magneto- telluric (MT)	1	40000	0.3m 300	120 x 1.15	73		
Audio MT	1	10000	1 20k	90 x 1.1	8.6		
Helios S/C	1	60000	52.2k	35 x 0.3	6		
Galileo S/C	1	1500	0.1 100k	30 × 0.25	0.18		

SearchCoil - Magnetometer <u>Real Sensors-Overview</u>						
Frequency Range	Low	Medium	High			
[Hz]	0.3m 200	1 20k	10 600k			
Spectral noise density [pT / ⊠Hz]	0.1 @ 1Hz	0.01 @ 1kHz	0.002 @50 kHz			
Length [m]	1.1	0.4	0.5			
Weight [kg]	15	0.45	0.07			

Magnetometer Calibration Magnetsrode - Characteristics

$$Magnetometer CalibrationSensor Model
$$\mathcal{B}_{c} = \mathcal{F}^{-1} \mathcal{B}_{m}$$
$$\mathcal{B}_{c} = \{\mathcal{R}^{-1} \mathcal{M}^{-1} \mathcal{F}^{-1}\} (\mathcal{B}_{c} - \mathcal{B}_{o} - \mathcal{B}_{res})$$$$

Magnetic Cleanliness

Magnetic Cleanliness Basic Ideas

- Magnetic properties of the s/c have to be known to perform excellent measurements in space
 - Every unit has to be mapped before integration
- S/C is represented by a model of *n* Dipoles
 Usage of Compensation-Magnets
 - Magnetic field at the location of the MAG can be minimized

Magnetic	Cleanlines	55
Example: A CLL	JSTER T	hruster

REPORT (UNIT LEVEL MODEL)									
DUT-NAME: 10 Newton Thruster s/n 485									
SCS (Spacecraft Coordinate System)									
	Position	n [cm]		Moments	[mAm2]				
	x	у	z	Mx	Му	Mz	Mtot		
1.	22.18	112.21	85.48	327.53	-384.85	-16.20	505.62		
2.	28.47	100.32	86.69	-1105.86	-2189.66	334.80	2475.80		
3.	25.90	101.97	86.78	729.64	2505.89	-276.60	2624.57		
Total Moment spec: 9.50									
Tota	1 Moment	:		-48.68	-68.62	42.00	94.03		
Pos	FGMO (x,y	(,z) [cm]		: 124.	65 -600	. 19 5	2.59		
Field	d FGMO sp	pec (x,y,z	,tot) [p	T]: -	0.7	5.2	0.3	5.3	
Fiel	d FGMO	(x , y , z	,tot) [p	T]: 2	3.1 -:	33.0	-14.4	42.8	

Summary

- Magnetic field measurements in space are exciting and interesting due to complex, temporally varying plasma interactions between SW, celestial bodies
- Instrumentation: FGM is standard s/c application (low power, leightweight, reliable, remote controlled, radiation hard, long term stable, high resolution...)
- Careful calibration necessary for serious science
- Extensive Magnetic Cleanliness program guarantees known measurement conditions

