

In-situ instrumentation for planetary surface exploration: present and future

M. Hilchenbach

Lindau, June 27, 2003

In-situ instrumentation

instrumentation on the surfaces of planets, asteroids, moons or comets

- goals:

measurement of elemental and isotopic composition, mineralogy and soil parameters, geological history, search for organic compounds on extraterrestrial bodies

- methods:

physical methods and applicable instrument designs: present and future

Heavy elements and iron containing minerals

Tools:

APXS - Alpha, Protons and X-ray Sensor Mössbauer spectrometer

(part of the payload of Nasa's Martian rover missions Spirit and Opportunity, ESA's Mars Express lander, Beagle II, ESA's Rosetta mission)

Martian and terrestrial sample compositions

Sample Acquisition Systems in Space Applications

Apollo Missions Handtools

Tongs (Apollo 12)

Hammer

Scoop

Gas Analysis Sample Container

Rake (Apollo 16)

Scale

On-orbit dry mass: 5600 kg Launch Date: 1970-09-12

Lunar soil in container: 0.1 kg Re-entry date: 1970-24-09

Example: "Hard" material: Fractures in individual grains

about 1 mm

Fig. 23 Hard, quartzitic Bunter sandstone with a very dense and compact fabric. No pores can be seen and the <u>fracture runs through</u> each individual quartz grain ("intragranular failure"; picture length ca. 1 mm)

Elements and isotopes

- classification
- objective: elemental and isotopic composition

Tools: mass spectrometer

Objective

Geochemistry of crust and regolith (rocks ?)

Tool: Composition Measurement

Bulk composition of the refractory, lithophile (Al, Ca, Mg, Ti, Be, Sc, V, Sr, Y, Zr, Nb, Ba, REE, Hf, Ta, Th, U), volatile lithophile (K, Na, Rb, Cl, F), refractory siderophile (Fe, Ni, Co, Mo, W), moderately to volatile siderophile or chalcophile (Ga, Ge, Au, Ag and S, Se, Cd, Hg), and atmophile elements (H, He, Ne, Ar, Kr, Xe).

The most abundant elements (99%) are:

O, Mg, Al, Si, Ca, Fe, K, Na

Other element are 'Trace Elements'.

26.8 (2.00) 1506 (217.84)

C

36.40

34.30 130

49 17.3 2.45

8.50

example: 'Bulk Silicate Earth'

Example of Lunar Soil Composition:

i.e. trace elements such as Scandium and Samarium

TABLE 4. Average composition of ropy glasses in 12032 and 12033, with bulk compositions of soils 12032 (Morris et al., 1983) and 12033 (Laul et al., 1980) for comparison. Also given is the major element composition of the quench-crystallized spherule clast (clast number 12032,40-21-1) shown in Figs. (µg/g)** que 1b a

1b and 2d.			·	,	,	0	19.9	(1.73)	
						N1	230	(29.96)	
	Average		Std.	Bulk	Bulk	Rb	19.1	(2.47)	
	12032,40					Cs	0.68	(0.15)	
	Kopy Glass		Dev.	Soll	Soil -21-1	Sr	200	(21.35)	
	(12032/33)		12032	12033	(Clast)	Ba	938	(144.78)	529
(11/49/)*						La	84.8	(13.44)	
(mt/0)	10 5	(0.41)	16 8	46.0	47.5	Ce	220	(33.91)	117
302	40.5	(0.41)	40.5	40.9	47.5	Nd	132	(21.37)	73
1102	2.24	(0.18)	2.9	2.5	0.17	Sm	36.9	(6.20)	20.7
Al ₂ O ₃	15.9	(0.68)	15.2	14.2	23.0	Eu	2.84	(1.08)	
Cr ₂ O ₃	0.20	(0.02)		0.39	0.19	Yb	26.4	(3.98)	15.2
reo	11.4	(0.63)	14.1	15.4	7.27	Lu	3.49	(0.49)	2.24
MnO	0.15	(0.02)	0.20	0.20	0.08	Zr	1232	(160.71)	
MgO	8.11	(0.41)	9.40	9.20	8.39	Hf	4.48	(2.28)	
CaO	10.7	(0.27)	10.7	11.1	13.2	Sb	0.11	(0.06)	
Na ₂ O	0.60	(0.13)	0.59	0.67	0.55	w	1.90	(0.34)	
K ₂ O	0.85	(0.21)	0.36	0.41	0.06	Ir	< 0.01	(0.01)	
P ₂ O ₅	0.74	(0.11)	-	-	0.04	Au	0.02	(0.01)	
						Zn	37	(6.70)	
Total CaO/	99.6		100.2	100.8	100.5	n	6	. ,	
Al ₂ O ₃	0.67		0.70	0.78	0.57	* Major	element oxide	s for the ror	w alasses
Mg	0.56		0.54	0.52	0.67	analysis.	chemient oxide	o tot uto top	ry glusses
n	51					** Aver from IN	age minor and AA data (Tabl	trace eleme e 3).	nt abund

s are from electron microprobe lances (µg/g) of ropy glasses are

Wentworth 1994

	Ī	li	sto	<u>or</u>	<u>y</u> .	- (<u>G</u> (<u>eo</u>	<u>cł</u>	nro	on	0	0	gy	7	
H Lí Be Na M	z	SI C R	n i s i d i	Radioo Radiog Radiog	uctive (yenic (yenic a	(Paren Daugh Ind Ra	nt) hter) díoact	ive			B Al	C Sí	N P	0 5	F Cl	He Ne Ar
K Ca Rb Si	Sc Y	Tí Zr	V Nb	Cr Mo	Мп Тс	Fe Ru	Co Rh	Ní Pd	Cu Ag	Zn Cd	Ga In	Ge Sn	As Sb	Se Te	Br 1	Kr Xe
Cs Bo Fr Ro	La La	нf	Ta	w	Re	Os	Ir	Pt	Au	нд	τl	Рb	Bí	Ро	At	Rd
	``	La Ac	Ce Th	Pr Pa	Nd U	Pm	Sm	Eu	Gd	ть	Dy	Ho	Er	Tm	Yb	Lu
Radiog	enic	: Ise	otoj	pes	G	eoc	he	mis	stry	7						
Examp	les:			40 182	X - Hf	40 ₄	Ar, ³² W	⁸⁷ F / (e	lb - xti	. ⁸⁷ nct	Sr, nu	147 Icli	Sm de	chr	⁴³ Non	Vd o omo
Presumably not achievable in-s - required sensitivity - isobaric interferences						1-si	tu	(laı	nde	er).						

Mass spectrometer instrumentation

Minerals Typically Found In Lunar Regolith (From Williams And Judwick, 1980) Geochemistry: Major Minor Spinels (Fe,Mg,Al,Cr,Ti)O4 Armalcolite (Fe2TiO5) Olivine (Mg,Fe)₂SiO₄ Silica (quartz, tridymite, cristobalite) SiO2 Pyroxene (Ca,Mg,Fe)SiO3 Iron Fe (variable amounts of Ni and Co) Plagioclase feldspars (Ca,Na)Al2Si2O8 Troilite FeS Ilmenite FeTiO₃ Trace Phosphates Oxides Rutile TiO₂ Corundum (?) Al₂O₃ Apatite^a Ca₅(PO₄)₃(F,Cl)₃ Hematite (?) Fe2O3 Whitlockitea Ca9(Mg,Fe)(PO4)7(F,Cl) Magnetite Fe₃O₄ Goethite (?) FeO(OH) Zr mineral Metals Copper (?) Cu Zircon^a ZrSiO₄ Brass (?) Baddeleyite ZrO_4 Tin (?) Sn Zr-rich mineral Silicates Pyroxferroite (Fe,Mg,Ca)SiO3 Amphibole (Ca,Mg,Fe)(Si,Al)₈O₂₂F Zirkilite or zirconolite^a CuZrTi2O7 Garnet (?) ${\rm Tranquilletyite}^{a}\,{\rm Fe}_{8}{\rm Zr}_{2}{\rm Ti}_{3}{\rm Si}_{3}{\rm O}_{4}$ Sulfides Meteoritic minerals Mackinawite (Fe,Ni)9S8 Schreibernite(Fe,Ni)3 Pentlandite (Fe,Ni)9S8 Cohenite (Fe.Ni.Co).O Cubanite CuFe₂S₃ Niningerite (Mg,Fe,Mn)S Lawrencite (?) (Fe,Ni)Cl₂ Chalcopyrite CuFeS2 Sphalerite (Zn,Fe)S Minerals in the lunar regolith ^aThese minerals are known to exhibit complex substitutions, particularly of elements as Y, Nb, Hf, U, and the rare earth elements that are concentrated in these minerals.

Organic compounds

Goals

identification and quantification of

- traces of organic compounds in the Martian deep soil
- organic compounds in the surface matter of a comet

Tool

- gas chromatograph coupled with a mass spectrometer

Viking 1976

Result: no life detected, could not even identify organic molecules (< ppb) in the upper layer of the Martian soil.

Science goal: Signs of Past and Present Life

Are there any organic or water molecules in the Martian soil or atmosphere ?

Detection and determination of organic compounds and water in Martian soil from different depths

- Observation of oxidised organic compounds, not just CO_2 ; Question: What are the oxidising agents? Are they present in the deeper Martian soil layers?

- Identification and characterisation of minute traces of complex organic molecules, which might be contained and/or encapsulated in the subsurface material and are most likely very rare. Amino acid chirality determination.

- Determination of elements essential for (terrestrial) life, such as C, O, N and H
- Measurement of the isotopic ratios, such as D/H, ^{13}C / ^{12}C , ^{15}N / ^{14}N etc.
- Traces of extinct life forms, even more interesting, traces of extant life forms

Fig. 4. Chromatogram of a mixture of hydrocarbons (C_1 to C_6) and nitriles (C_1 to C_4) with a CPP–DMPS (14:86) capillary column. Capillary column MXT 1701 (10 m×0.18 I.D. mm). MS ion trap detector as in Ref. [16]. Carrier gas, He; temperature, 30°C; pressure drop, 0.3 bar. (1) Methane, (2) 1-butene, (3) *n*-pentane+1-pentene, (4) 2-methyl-2-butene, (5) cyclopentane+3-methylpentane, (6) *n*-hexane+1-hexene, (7) acetonitrile, (8) acrylonitrile, (9) *n*-heptane+cyclohexene, (10) benzene+methacrylonitrile, (11) propionitrile, (12) iso-butyronitrile, (13) *cis-* or *trans*-crotonitrile, (14) *n*-octane, (15) butyronitrile, (16) toluene, (17) *cis-* or *trans*-crotonitrile.

PRINCIPL +			Chemical
organic molecule	derivatizing agent	derived compound	derivatization
OBJECTIV Less polar or Increased sen separation	VES : more volatile molecules sitivity and better		
EXAMPLE	ES :		
$\int - $	(CH ₃)₄NOH ► R	$COOCH_3 + H_2O+ (CH_3)N$	
	OMF-DMA R nylformamide-dimethylacetal)	COOCH ₃ +HCON(CH ₃) ₂	
	ATBSTFA	RCOOSi-tBu	
N-Methyl-N	-t-butyldimetylsylil trifluoroacetamid	le	
Fig. 3. Illustration of one-step reactio requirements. The derivatized using t to different esters,	of chemical derivatization (CD) ns commonly used in laboratory carboxylic acid on the left side of hree different reactions. This lea which can be easily analyzed b	principle and examples that could fulfill all our of the reaction scheme is dds, from top to bottom, by conventional means.	

are presented decomposition of magnesite, calcite, rhodochrosite and smithsonite at heating rates of up to 10° C/min. Pyrolysis experiments results, at heating rates much faster, are also available in the original article (adapted from Kotra et al., 1982).

Dettettet con	pounds		Expected compounds						
	Stratospheric mixing ratio	Simulation experiment	Hydrocarbons	Nitriles	O-Compound				
N ₂	0.90-0.99								
Ar	< 0.06								
CH_4	0.017-0.045								
	0.017-0.12 T								
CO	5.0×10^{-5}				HCHO				
CO ₂	1.3×10^{-8} N				CH ₃ OH				
H ₂	0.00060-0.0014								
$H_2 O$	8.0×10^{-9}								
C_2H_6	1.6×10^{-5} N	Maj.	Propene						
C_2H_2	6.5×10^{-6} N	Maj.	Allene						
C_2H_8	1.2×10^{-6} N	++	Cyclopropane						
C_2H_4	1.5×10^{-5} N	++	Triacetylene						
C_3H_4	3.7×10^{-8} N	+	Tetraacetylene						
C_4H_2	2.7×10^{-8} N	+	C_4H_4						
HCN	1.5×10^{-6} N	Maj.	$1,2-C_4H_6$	C ₂ H ₅ -CN					
HC ₃ N	4.5×10^{-8} N	++	$1,3-C_4H_6$	CH ₂ =CH–CN					
C_2N_2	2.2×10^{-8} N	+	C_4H_8	CH ₃ -C ₂ -CN					
CH ₃ CN	Detected	++	$n - C_4 H_{10}$	$n-C_3H_7-CN$					
C_4N_2	Solid phase		iso-C ₄ H ₁₀	iso-C ₃ H ₇ -CN					
			C_6H_6	cyclo-C ₃ H ₆ -CN					

GC-MS onboard the Rosetta Lander

Gas chromatograph coupled to high resolution mass spectrometer

Example: COSAC (Rosetta Lander 2003)

New target : 67P/Churyumov-Gerasimenko

In-situ measurements on the comet surface

Experiments on the Rosetta Lander

Images (CIVA, ROLIS), in-situ analysis (APX, COSAC, PTOLEMY), electrical and acustical measurements, temperature and dust (MUPUS, SESAME), magnetic field and plasma, radiowavestransmission -"nucleus-tomographie" (ROMAP, CONSERT)

Remote instruments

Remote instruments: located on orbiting satellites or terrestrial telescopes

Example:

Apollo 15 and 16: X-Ray Fluorescence and Gamma-ray Spectrometer

These spectrometer studied the composition of the Moon's surface from lunar orbit. The Gamma-ray Spectrometer was deployed on a 7.6-meter-long boom, visible in the above photograph.

Neutron spectrometer - Mars Odyssey

Global Map of Epithermal Neutrons: Epithermal neutrons provide the most sensitive measure of <u>hydrogen</u> in surface soils. Inspection of the global epithermal map shows high hydrogen content in surface soils south of about negative 60 degree latitude and in a ring that almost surrounds the north polar cap..

Remote sensing - in-situ measurements

Nanedi Valles system Mars Global Surveyor MOC image 8704, 1998 9.6 meters/pixel

Exploration of soil layers by Sample Acquisition: In-situ Logging and Analysis and / or Sample Return

Mars Rover: Athena