

Outline

- motivation
 - the Sun's electromagnetic spectrum
 - spectroscopic methods
 - observational examples
- instrumental aspects
 - optical design
 - detectors
 - others
- highlights and outlook

EUV Spectroscopy

Spectroscopic methods

- line identification / selection
- line shifts / Doppler flows
- line widths / line shape
- plasma diagnostics / line ratios
- raster scans
- drift scans
- abundance measurements / FIP effect
- radiance / irradiance
- atomic physics EUV Spectroscopy

Line shape

- emission profile $\Psi(\lambda)$ $\Psi(\lambda) = \Psi(\lambda)_{nat} * \Psi(\lambda)_{coll} * \Psi(\lambda)_{th} * \Psi(\lambda)_{NT}$
- Optically thin emission lines are Gaussians
- $\Delta \lambda_{\rm D} = \lambda_0 / c \ (2kT/m + \xi^2)^{1/2}$ $\xi \text{ non-thermal velocity (turbulence)}$

Performance characteristic

Solar Ultraviolet Measu	rement of Emitted	Radiation	
	CDS	SUMER	EIS
wavelegth range, Å	308-381 (NI)	790-1608 (1)	180 - 204 (A)
	513-633	465-804 (2)	240 - 290 (B)
	151-221 (GI)		
	256-338		
	393-493		
	656-785		
spatial resolution / "	4 - 8	1.2	1
spectral " / km/s	10	2	2-3
temporal " / s	10	10	1

Instrumental aspects

- Spectroscope:
 - telescope
 - slit
 - dispersive element
 - 2D detector
- infrastructure
 - to bring the instrument into space
 - to bring the data back to Earth

EUV Spectroscopy

Telescope slit

- slit width limits photon input
- slit width limits spectral resolution
- slit: loss of >99% of photons
 - slitless spectroscopes (strong lines, filters)
 - slot spectroscopes (wide slit)
 - raster scans
 - drift scans (low temporal resolution)

EUV Spectroscopy

Telescope collimator

- Makes parallel light (classical design)
- defines magnification (pixel adjustment)
- folds the light beam (compactness)

EUV Spectroscopy

Spectroscope grating

- Bragg crystal systems
- holographic gratings
- ruled gratings
- variable line space technique (TVLS)
 - future 2 reflection designs

Instrument detector(s)

- Films
- CCDs
 - back-illuminated CCDs
 - intensified CCDs
- MCP detectors
 - multianode systems (MAMA)
 - time delay systems (XDL)
- APS sensors
- BOLD detectors EUV Spectroscopy

16 bit pixels 1 k × 1k 10 s	dynamical range small and numerous good time resolution	
Example SUMER: <u>1</u>	<u>6 bit/px_x_400 000 bit</u> 10 s	≈500 kbit/s
Example SUMER: <u>1</u> Data selection	<u>6 bit/px × 400 000 bit</u> 10 s windows, binning	≈500 kbit/s
Example SUMER: <u>1</u> Data selection Data compression	<u>6 bit/px × 400 000 bit</u> 10 s windows, binning sqrt, JPEG, MPEG	≈500 kbit/s

