Solar telescopes

Part 1: general aspects of astronomical telescopes
Part II: specific aspects of solar telescopes

Contents of Part I

-What are telescopes good for?

- historical aspects
- the paraxial telescope
- real optical systems
- a simple (solar) telescope
- the telescope Zoo

Contents of Part II

- science drivers in solar observations
- optical parameters of solar telescopes
- performance criteria of (solar) telescopes
- specific problems in solar observations
- stray light
- thermal aspects 1: "mirror seeing"
- thermal aspects 2: athermalisation of optics

Contents of Part II contd.

- Examples of solar telescopes
- McMath Pierce facility Kitt Peak
- Solar Tower telescopes
- Gregory telescopes
- SUNRISE telescope
- Visible Imager and Magnetograph onboard Solar Orbiter

Solar Telescopes I

General aspects of astronomical telescopes

What is a telescope good for?

- instrument to map angular pattern on sky plane onto detector (object at infinite distance!) \rightarrow camera
- visual magnification (historically) in direct viewing systems
- collecting photons

History

- first telescope pointed to the sky by Galileo; also the Sun is target: Sunspots seen
- Scheiner uses telescope to project an image of the Sun (safe solar viewing)
- first dedicated solar telescopes from beginning of 20th century on, first peak in the 40ies (military interest in flare forecast; very actual!)

The paraxial telescope

- optical elements represented by ideal „operators" acting on direction of geometric light rays \rightarrow „matrix optics"
- paraxial approximation: in Snell's law replace $\sin x \sim x$

NOTA BENE!

- each „paraxial lens" can represent complex optical systems:
- a real lens
- a combination of lenses
- a mirror
- a combination of mirrors
- a combination of mirrors and lenses

basic parts of an optical system

- entrance aperture
- objective lens
- focal plane (detector)
- „eyepiece" optics (can also be a complex instrument, c.f. a spectrograph, spectropolarimeter, magnetograph, FabryPerot interferometer....)

basic parameters of an optical system

- focal length
- plate scale
- entrance pupil diameter
\} this is what you want
- f-ratio
- exit pupil diameter
- angular magnification
- field of view

\}
this is what you get

visual observations: the eyepiece

- eyepiece re-collimates the image rays (,"parallel light") in order to allow „reimaging" by the observers eye
- „the intermediate image in the telescope is seen trough a magnifying lens"
- angular magnification given by $\mathrm{f}_{\mathrm{obj}} / \mathrm{f}_{\text {okular }}$

FOV and field lens

- how is it achieved that the light that enters the telescope can exit again???
- small size of eyepiece restricts the angular coverage in observations (FOV)
- Solution: place lens in focal plane to image the entrance pupil onto eyepiece lens
- diameter of this lens determines the useable field \rightarrow „field lens"

interlaced optical paths

- in every optical instrument: image path $\leftrightarrow \rightarrow$ pupil path are nested in each other !!!

Example: SUNRISE ISLID reimager:

entrance
aperture

each focal point sees light coming from a cone with opening angle D/f.
„homofocal cone".

Fieldstops, apertures, obscurations, spiders, vignetting..

- light rays propagate until they hit an optical surface or a wall....
the effect of an obstacle depends on its location in the optical system

real optical systems

- geometric optics: light represented by rays; rays obey Snell's law

- wave optics: concept of wave fronts; optical surfaces deform wave fronts by influencing optical path lenght

aberration theory

- paraxial approximation not valid for real optical elements \rightarrow optical aberrations
- purely geometric aberrations: no impact on quality of point image, but on its location
- image curvature
- image tilt
- distortion
- not regarded here

chromatic aberrations

- refractive index (optical path length in glass) depends on frequency (wavelength),
- „dispersion" effects: lateral and axial colour
- inherent to refractive optics (Refractors)
- can be disregarded for mirror optics (Reflectors)

a simple (solar) telescope

- the spherical mirror:

spherical aberration

- spherical aberration limits the useful aperture of a sperical mirror (lens), and hence the f-ratio (german name: "Öffnungsfehler")
- for $\mathrm{f} \#>40$ spherical aberration becomes negligeable
- remark: independent on field angle \rightarrow sherical mirrors ideal for wide angle systems \rightarrow Schmidt camera

excurs: The Schmidt camera

Figure 1. The oplical layout of the lengless Schmidt camera.

how to make a Schmidt camera faster

- put corrector plate in entrance aperture (center of the spherical mirror) to correct for spherical aberration (Schmidt plate)

- \rightarrow aspherisation („aspheric optics", aspheric lens; hard to manufacture)

aspheric optics: parabola

aberrations of aspheres

- aberration free focus only „on axis"; deviation from rotational symmetry (edges of FOV) causes aberrations:
- (astigmatism)
- Coma

selecting a mirror

- for large $\mathrm{f} \#$ a spherical mirror is the best choice (easy to manufacture, very insensitive to alignment errors: shift compensates tilt!)
- prime focus solar telescopes with f > >40 use spherical mirrors
- example: McMath-Pierce facility on Kitt Peak (f\# 54, 1.5m diameter, 86m (!) focal length, observation in prime focus)

arguments against prime focus telescopes

- high angular resolution requires large effective focal length (non-vanishing pixel size!)
- in prime focus:
effective focal length $=$ focal length $=$ length $!$

telescopes with short primary focal length

- compact telescopes consist of short primary focal length + internal magnification
- observation in secondary (tertiary) focus
- folded designs
- 2nd mirror can be used to compensate for primary aberrations (,,optical systems")

NOTA BENE!

- compensating optical aberrations of surfaces by adding more surfaces must be done extremely carefully, otherwise you risk to fight fire with fire..

