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Dust in the solar system

How do we measure cosmic dust?
Impact Detectors (e.g. Cassini/CDA)
Dust Collectors (e.g. Rosetta/Cosima)
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Dust Sources in the Solar Systerﬁ
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The Cosmic Cycle of Matter
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The cosmic cycle of matter:
« Hearvy elements are produced in stars and supernova explosions and ejected into interstellar space

« Form building blocks for the next generation of stars and planets.
« Also our solar system including the Earth was fromed from such primitve matter.

How Do We Measure Space Dust?




Investigation Techniques for Space Dust

Astronomical Observations In-Situ Investigations
(Collective particle properties) (Measurement of individual grains)

B Pictoris Galileo at Jupiter

Investigation Techniques for Space Dust
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In-Situ Dust Detection Techniques

Impact speed:

Impact lonisation Detection

e.g. Galileo, Ulysses, Cassini,
Giotto, VeGa 1/2,
Stardust (CIDA)

Each dust impact counted!

Dust Flux, impact direction, speed,
mass, composition (m/Am ~ 100)

Impact speed:
Dust Collection

e.g. Stardust (Aerogel collector),
Rosetta/Cosima

Grains are collected and identified!

Dust composition (m/Am up to 2000
in case of Cosima).

Grain extraction and analysis in the
laboratory (Stardust)

Dust Impact Detection




Impact lonization Dust Detection

* Multi-coincidence impact ionization detection

» Measurement of up to 3 charge signals: target, ion collector, channeltron
« Impact charge: Q ~ m v3°

» Impact speed derived from charge rise time

* Particle mass derived from charge amplitude

» Mass range: 10-° - 10-° kg (~ 0.1 - 10 um radii)

« Speed range: 2 - 70 km s

* Calibration: dust accelerator Dust particle _
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Cassini Cosmic Dust Analyser

* Impact lonisation Detector

» Sensor area 0.1 m?

* Mass, speed, impact direction,
charge, composition

« Calibrated: 2 — 100 km/sec

* Grain sizes: ~0.1 - 10 pm
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Figure 7 Schematic sketch of an electrostatic accelerator facility




Dust Ejection from Enceladus

Measured Expected

Enceladus Temperature Map

© © OHRD dato
Hol spot

- - * Isolropic

Predicted Observed
Temperatures Temperatures

NASA/JPL 2

4]
tima to C/A, min

Hot spot at
south pole Spahn et al., 2006

Water Ice in Saturn's E Ring

e First in-situ detection of water ice in Saturn's dust ring
» Peak at H,;0* and following H,0*(H,0), lines (hydronium ion)

2004-302/03:01:29

Srama, 2004




Dust Collection
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Stardust Return Capsule

# Mg-rich silicates (olivine, pyroxene), Ca-Al-rich minerals
(diopside, anorthite, spinel), grains must have been formed at T
> 1400 K.

¢ FeS

¢ No hydrated minerals, no carbonates, no magnetite yet

¢ High temperature phases similar to CAls

# Crystalline and amorphous silicates found

¢ X wind model (Shu et al. 1996)

1 pm FeS grain
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2 um forsterite grain

Comets: Remainders from the

Formation of the Solar System

Nucleus of Halley's comet
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'Ro.s'étt'a: Voyage to Comet
‘Churyumov-Gerasimenkov~=

I_n-Sifu analysis of material from
the early solar system

Rosetta/ COSIMA
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COSIMA Functional Principle
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» Dust is collected on metal black targets which are stored in Target Manipulation Unit

* Dust grains are located by microscopic camera COSISCOPE

* A pulsed Indium ion beam partially ionizes the dust grains

» Secondary ions are accelerated by electric field and travel through drift tube with ion reflector
* lons are detected by ion detector; flight times are recorded by T/D converter

» Mass spectra calculated from the time- of- flight spectra

COSIMA Target

Cosima target (1x1 cm?) prepared with clinopyroxene powder




COSIMA Spectrum
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COSIMA Specifications

Atomic mass range 1...4000 Da
Rel. Atomic mass resolution m/Am at m=100 ~ 2000
Mass 19.8 kg
Indium ion pulse duration ~5ns
Indium ion energy 8 keV

Power consumption from 28 V DC 204W

Credits: Max-Planck-Institut fir Kernphysik,
Heidelberg (H. Fechtig, E. Grun, J. Kissel)
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