

remark

Note that the pixel size of a sensor array is of the order of 10 to 20 um squared.

If you design an optical system (a telescope), the image scale must be such that the resolution element corresponds with the pixel size and the field of view corresponds with the array size.

The parameter to adjust is the Focal Length.

Photodetector materials

Material	E _{gap} (eV)	λ [nm]	band
Si	1,12	1100	Visible
GaAs	1,42	875	Visible
Ge	0,66	1800	NIR
InGaAs	0,73-0,47	1700-2600	NIR
InAs	0,36	3400	NIR
InSn	0,17	5700	IR
HgCd	0,7-0,1	1700-12500	NIR-FIR

Performance Parameters (2)

- Array size (pixel size and # of pixels)
- Frame rate (speed, determines image cadence)
- Radiation hardness
- Power requirements
- Technology
- Price

Multichannel plate (MCP) detectors (photoemission detectors, photon counting detectors) **1 UV PHOTON** WINDOW ELECTRON 10 MILLION AMPLIFIER ELECTRONS ŧ SIGNAL ELECTRON PULSE DETECTOR SIGHAL CHANNEL each MCP operates at CHANNEL a gain of ~100 electrons INPUT ELECTRON OUTPUT INPUT SIDE STRIP CURRENT VD

