

Planck-Gesellschaft		Max-Planck-Institut für Sonnensystemforschung
IMPRS L	ECTURE	'Space Instrumentation' Dec 4 – 7, 2006
TIME	SPEAKER	WORKING TITLE
Mon, Dec 4th		
9:30-10:15	J. Woch	Introduction I
10:30-11:15	J. Woch	Introduction II
11:30-12:15	A. Gandorfer	Solar Telescopes I
lunch		
13:30-14:15	A. Gandorfer	Solar Telescopes II
14:30-15:15	W. Curdt	Solar Spectroscopy
15:30-16:15		Tour SUMER ?
Tue, Dec 5th		
9:30-10:15	A. Gandorfer	Instrumental Techniques for Solar Polarimetry, Magnetographs
10:30-11:15	R. Schwenn	Coronagraphs
11:30-12:15	P. Barthol	Sunrise – A Solar Balloon Mission
lunch		
13:30-14:30	J. Woch	Particle detectors
14:45-15:45	I. Richter	Magnetometer

IMPRS L	ECTURE	'Space Instrumentation' Dec 4 – 7, 2006
TIME	SPEAKER	WORKING TITLE
Wed, Dec 6th		
9:30-10:15	M. Hilchenbach	Rosetta – An Example for a Modern Planetary Missic
10:30-11:15	N. Hoekzema	Cameras and Altimeters
11:30-12:15	P. Hartogh	Microwave Spectroscopy
lunch		
13:30-14:15	H. Krueger	Dust Detection and Analysis
14:30-15:15	U. Mall	IR / UV Spectroscopy
15:30-16:15	F. Goesmann	Lander and Instrumentation
Thu, Dec 7th		
9:30-10:30	U. Schühle	Imaging Detectors
10:45-11:45	H. Hartwig	Space Instrument Development
lunch		
13:00-14:00		Tour: Test Chambers, CCD lab
14:00-15:00	T. Sakurai	Seminar: First Glimpse on Hinode Data

Max-Planck-Gesellschaft		Solar System	Max-Planck-Institut für Sonne	nsystemforschung		
Electromagnetic Spectrum						
Quantum nature of radiation: $E_{\nu} = h\nu = hc/\lambda$		Regions	of the Spectrum			
		Wavelength (m)	Frequency (Hz)	Energy (J)		
Radio/Microwave						
 (Frequency/Wavelength) → THz, GHz, MHz, cm, m > Infra-red/Sub-mm (Wavelength) → μm, mm 	Radio	> 1 x 10 ⁻¹	<3 x 109	<2 x 10 ⁻²⁴		
	Micro- wave	1 x 10 ⁻³ – 1 x 10 ⁻¹	3 x 10 ⁹ – 3 x 10 ¹¹	2 x 10 ⁻²⁴ – 2 x 10 ⁻²²		
	Infrared	7 x 10 ⁻⁷ – 1 x 10 ⁻³	3 x 10 ¹¹ – 4 x 10 ¹⁴	2 x 10 ⁻²² – 3 x 10 ⁻¹⁹		
Visible/UV/EUV (Wayelength)	Optical	4 x 10 ⁻⁷ – 7 x 10 ⁻⁷	$4 \ge 10^{14} - 7.5 \ge 10^{14}$	3 x 10 ⁻¹⁹ – 5 x 10 ⁻¹⁹		
\rightarrow Å, nm ; <100eV	UV	1 x 10 ⁻⁸ – 4 x 10 ⁻⁷	7.5 x 10 ¹⁴ – 3 x 10 ¹⁶	5 x 10 ⁻¹⁹ – 2 x 10 ⁻¹⁷		
> X-ray, \rightarrow <1 – >10 keV γ -ray,	X-ray	1 x 10 ⁻¹¹ – 1 x 10 ⁻⁸	3 x 10 ¹⁶ – 3 x 10 ¹⁹	2 x 10 ⁻¹⁷ – 2 x 10 ⁻¹⁴		
Cosmic Rays >1 MeV	γ-ray	< 1 x 10 ⁻¹¹	> 3 x 10 ¹⁹	> 2 x 10 ⁻¹⁴		
			J. Woch. IMPRS Lecture Spac	e Instrumentation. Dec. 4 - 7. 2006		

	Wavelength (m)	Frequency (Hz)	Energy (J)]
Radio	> 1 x 10 ⁻¹	<3 x 10 ⁹	<2 x 10 ⁻²⁴	-
Micro-wave	1 x 10 ⁻³ – 1 x 10 ⁻¹	3 x 10 ⁹ – 3 x 10 ¹¹	2 x 10 ⁻²⁴ – 2 x 10 ⁻²²	1
Infrared	7 x 10 ⁻⁷ – 1 x 10 ⁻³	$3 \ge 10^{11} - 4 \ge 10^{14}$	2 x 10 ⁻²² – 3 x 10 ⁻¹⁹	1
Optical	4 x 10 ⁻⁷ – 7 x 10 ⁻⁷	4 x 10 ¹⁴ - 7.5 x 10 ¹⁴	3 x 10 ⁻¹⁹ – 5 x 10 ⁻¹⁹	1
UV	1 x 10 ⁻⁸ – 4 x 10 ⁻⁷	7.5 x 10 ¹⁴ – 3 x 10 ¹⁶	5 x 10 ⁻¹⁹ – 2 x 10 ⁻¹⁷	1
X-ray	1 x 10 ⁻¹¹ – 1 x 10 ⁻⁸	3 x 10 ¹⁶ – 3 x 10 ¹⁹	2 x 10 ⁻¹⁷ – 2 x 10 ⁻¹⁴	-
γ-ray	< 1 x 10 ⁻¹¹	> 3 x 10 ¹⁹	> 2 x 10 ⁻¹⁴	-
%	Optical window		Radio window	_
Atmos % — is opa	phere aque	Atmosphere is opaque		Atmosphere is opaque

Solar Physics is a somewhat more mature field (the standard astrophysical methods (ground based observatories) were quite adequate to give some insight even before the space age (provided a head start)

Theoretical models, simulation have made tremendous progress (great ideas, advanced techniques and powerful computer hardware)

Simulations down to scales not yet accessible by existing observatories (order of 10 km)

for testing these and the underlying physical concept new projects are designed (e.g. Sunrise)

But surely beside proving or disproving the models Sunrise will bring new discoveries by opening a new spatial domain

Max-Planck-Institut für Sonnensystemforschung

 $\langle Q \rangle$

Magneto-convection in the solar photosphere by means of realistic 3D MHD. The figure shows snapshots of (frequency integrated) brightness from a simulated plage region with an average field strength of 200 G. (Resolution ~ 10 km)

A loo	k at a Space Age The Science Pro	ncy (ESA) – ogram	€ <u>m</u> rs
ESA's Cosmic Visio	n Program		
OPERATIONS			
Venus Express [2005] Rosetta [2004] Double Star [2003] SMART-1 [2003] Mars Express [2003] INTEGRAL [2002] Cluster [2000] XMM-Newton [1999] Cassini-Huygens [1997] SOHO [1995] Hubble [1990] Ulysses [1990]	COROT [2006] Herschel [2007] Planck [2007] LISA Pathfinder [2009]	BepiColombo Gaia JWST LISA	Darwin Hyper <mark>Solar Orbiter</mark> XEUS

Max-Planck-Gesellschaft Max-Planck-Institut für Sonnensystemforschung	8
Selection of a Mission – The Different Phases (cont.)	
Definition Phase Stages 1. Stage: The Invitation to Tender for the Definition Phase and the selection of potential Prime Contractors takes place. Two competing Contractors are selected on basis of industrial proposals. Industry commences the study of the mission defined during the Assessment Phase and assists ESA in the technical preparation of the Announcement of Opportunity (AO) for the PI provided payload. The AO is issue The potential prime contractors incorporate the technology developments already underway and planned in the ESA Science Core and Technology Research Programmes (CTP and TRP) for the particular mission into the system design. This accomplished by the already selected technology providers being incorporated direct into the team by the potential prime contractors. 2. Stage: The payload is selected via a Peer Group procedure. During this activity industry: - supports the Peer Group through technical assessment of the consequences of incorporating the different instruments in the baseline mission design,	n the ied. is ctly
 advises ESA as to the likely impacts of alternative payload options on programma and costs. 	atics
Extensive dialogue between the potential PIs, industry and ESA takes place in this period. At the end of this phase, the instruments to be flown are selected. Industry incorporates the selected payload and the viable technologies into their mission students.	dy.
J. Woch. IMPRS Lecture Space Instrumentation. Dec.	4 - 7. 2006

Some Things to Remem	nber
Space Missions usually are:	
 Precious they offer discoveries of new frontiers, they have an outstanding visibility to the public, data are often spectacular, data are often unique. Risky some missions are lost too early, (some even B instruments can fail, there are no possibilities for Expensive in order to minimize risk, everything has to be d than usual, proper tests have to be conducted, the agencies require considerable management safety aspects are major cost drivers Rare because of the cost, they are carefully selected other discplines are in competition. 	BEFORE launch!) or repair, designed more carefully it efforts, and often delayed,

	Solar System Sch (d)	
Space Missions usually are:		
 Long-term efforts, because of long approvement procedures, long development phases, long mission durations, long travel times to their research goals Long scientific evaluation and re-evalue Ambitious They are conquering new frontiers with They require most advanced high-tech Extremely conservative No avoidable risk must be taken, Only space-proven techniques may be In most cases, the PISs are experience 	Helios: s ation unknown e developme applied, ed and, thus	1965 to 1969 1966 to 1976 1974 to 1986 n/a 1974 to 2003 environment, ents,
	.I. Wort	h IMPRS Lecture Space Instrumentation Dec 4

Tax-Planck-Gesellschaft Some Key Future Missions I: Solar and Connection	fur Sonnensystemforschung
MISSION	LAUNCH
Hinode (Solar B) - The Solar Hubble	Sep 22, 2006
STEREO - The Sun in 3D (Solar TErrestrial RElations Observatory)	Oct 25, 2006
SDO - The telemetry giant, Solar activity & Space Weath (Solar Dynamics Explorer - First Mission in NASA's Living with	her Aug 2008 h a Star Program)
Sunrise - A high-resolution balloon mission	> 2009
Solar Orbiter - Getting close to the Sun and out-of-eclip (ESA's next Solar Mission)	tic 2015 ?
Kuafu - The Chinese Space Weather Explorer	2012 ?

nstrument	Mass [kg]	Power [W]	Instrument	Mass [kg]	Power [W]
In-Situ instruments			b) Remote-Sensing instruments		
lar Wind Plasma Analyzer (SWA)	16.5	15.5	Visible Imager & Magnetograph (VIM)	30.4	35.0
dio & Plasma Wave Analyzer (RPW)	13.0	7.0	EUV Spectrometer (EUS)	18.0	25.0
gnetometer (MAG)	2.1	1.5	EUV Imager (EUI)	20.4	28.0
ergetic Particle Detector (EPD)	9.0	8.5	Coronagraph (COR)	18.3	30.0
st Particle Detector (DPD)	1.8	6.0	Spectrometer Telescope Imaging X-rays (SIIX)	4.4	4.0
eutron Gamma-ray Detector (NGD)	5.5	5.5	SUBTOTAL	91.5	122
BTOTAL	47.9	44.0	c) Payload Support Elements (PSE)	28.4	4.0
			TOTAL (IS+RS+PSE)	167.8	170.0
			ИГТЬ-ТА	K	

lax-Planck-Gesellschaft	Solar System 50%
Some Key Future Missions	s II: Planetary Missions
MISSION	LAUNCH
Cassini-Huygens - Saturn and Titan	Oct 15, 1997
MarsExpress - Mars	June 2, 2003
VenusExpress - Venus	Nov 9, 2005
Rosetta - ESA's Cometary Mission	Mar 2, 2004
Messenger - Mercury	Aug 3, 2004
BepiColombo - Mercury	Aug, 2013
New Horizons - A Pluto - Kuiper Belt	mission Jan 19, 2006
Dawn - An Asteroid mission (Vesta, C	Geres) June, 2007
Several NASA (Constellation Progran Missions	n) and ESA (Aurora Program) Mars

New Horizons

Max-Planck-I

è

NASA Pluto-Kuiper Belt Mission

Dawn Mission Timeline (SEP)

Launch	19 Jan 2006
Jupiter gravity assist	Feb 2007
Pluto-Charon encounter	July 2015
Kuiper belt object encounters	2016-2020

Mission Goal:

- · Map surface composition of Pluto and Charon
- · Characterize geology and morphology ("the look") of Pluto and Charon
- · Characterize the neutral atmosphere of Pluto and its escape rate
- Search for an atmosphere around Charon
- Map surface temperatures on Pluto and Charon
- · Search for rings and additional satellites around Pluto
- PLUS... conduct similar investigations of one or more Kuiper Belt Objects

