Dust Detection and Analysis

Harald Krüger (MPS)

Ricture: MPIA

Outline

- Dust in the solar system
- How do we measure cosmic dust?
- Impact Detectors (e.g. Cassini/CDA)
- Dust Collectors (e.g. Rosetta/Cosima)

Cosmic Dust

Interstellar dust

Comets

Zodiacal light

Dust Sources in the Solar System

Collisions: asteroids, meteorites

Erosive collision

Catastrophic collision

Halley Giotto HMC Volcanoes

0

Galileo

Comets

How Does Cosmic Dust Look Like?

How Do We Measure Space Dust?

Investigation Techniques for Space Dust

Astronomical Observations

(Collective particle properties)

β Pictoris

In-Situ Investigations (Measurement of individual grains)

Galileo at Jupiter

Investigation Techniques for Space Dust

In-Situ Dust Detection Techniques

Impact speed: v > 1 km/sec

Impact Ionisation Detection

Impact speed: v < 1 km/sec

Dust Collection

e.g. Galileo, Ulysses, Cassini, Giotto, VeGa 1/2, Stardust (CIDA) e.g. Stardust (Aerogel collector), Rosetta/Cosima

Each dust impact counted!

Dust Flux, impact direction, speed, mass, composition (m/ Δ m ~ 100)

Grains are collected and identified!

Dust composition (m/∆m up to 2000 in case of Cosima). Grain extraction and analysis in the laboratory (Stardust)

Dust Impact Detection

Cassini Cosmic Dust Analyser

Cassini/CDA MPIK Heidelberg

Cassini Cosmic Dust Analyser

- Impact Ionisation Detector
- Sensor area 0.1 m²
- Mass, speed, impact direction, charge, composition
- Calibrated speed: 2 100 km/sec
- Grain sizes: ~ 0.1 10 μm

CDA

Instrument Calibration

Instrument Calibration: Dust Accelerator

MPIK Heidelberg

Dust Ejection from Enceladus

Water Ice in Saturn's E Ring

- First in-situ detection of water ice in Saturn's dust ring
- Peak at H_3O^+ and following $H_3O^+(H_2O)_x$ lines (hydronium ion)

Srama, 2004

Dust Collection

Stardust Sample Return of Cometary Particles

Aerogel collector

Stardust Return Capsule

Mg-rich silicates (olivine, pyroxene), Ca-Al-rich minerals (diopside, anorthite, spinel), grains must have been formed at T > 1400 K. Sulfides (e.g. FeS) very common. No hydrated minerals, carbonates?, magnetite? High temperature phases similar to CAIs. Crystalline and amorphous silicates found. X wind model (Shu et al. 1996).

Rosetta: Voyage to Comet Churyumov-Gerasimenkov

In-Situ analysis of material from the early solar system

Comets: Remainders from the Formation of the Solar System

Nucleus of Halley's comet

Giotto, HMC

COSIMA Functional Principle

- Dust is collected on metal black targets which are stored in Target Manipulation Unit
- Dust grains are located by microscopic camera COSISCOPE
- A pulsed Indium ion beam partially ionizes the dust grains
- Secondary ions are accelerated by electric field and travel through drift tube with ion reflector
- Ions are detected by ion detector; flight times are recorded by T/D converter
- Mass spectra calculated from the time- of- flight spectra

Rosetta/COSIMA

COmetary Secondary Ion Mass Analyser

Dust Inlet

COSIMA Specifications

Atomic mass range	14000 Da
Rel. Atomic mass resolution m/Δm at m=100	~ 2000
Mass	19.8 kg
Indium ion pulse duration	~ 5 ns
Indium ion energy	8 keV
Power consumption from 28 V DC	20.4 W

COSIMA Target

Cosima target (1x1 cm²) prepared with clinopyroxene powder

COSIMA Spectrum

m/z

COSIMA Spectrum

The End