

IMPRS Lectures on SPACE INSTRUMENTATION 25-29 October 2010 MPS , Katlenburg-Lindau :

Space Instrument Development (based on lecture by Hermann Hartwig, Dec. 2006)

Reinhard Meller, MPS

After winning the proposal selection

it usually takes about 8 years for a major instrument up to launch.

Examples :

SOHO (ESA solar cornerstone mission)

instrument selection : 1988 ⇒ launch : Dec 1995

ROSETTA (ESA planetary cornerstone mission)

instrument selection : 1995 ⇒ launch : Mar 2004

WHY ?

Commercial off-the-shelf (COTS) instruments usually will not work for space because they

➤ are too heavy

> will not survive the launch loads

> will stop functioning under space conditions:

space is a very hostile environment !

A closer look at :

mass : why it is important

<u>SOHO :</u>	scientific instruments accumulated	= 610 kg
	spacecraft mass at launch	= 1850 kg
	launcher mass	= 237 500 kg
	launch cost ATLAS II AS	= 72 000 000 €
	specific launch cost for instrument :	<u>118 000 </u>
ROSETTA:	scientific instruments accumulated	= 186 kg
	spacecraft mass at launch	= 2900 kg
	launcher mass	= 760 000 kg
	launch cost ARIANE 5	= 100 000 000 €
	specific launch cost for instrument :	<u>537 634 <i>€</i>kg</u>
	[for comparison : price of gold (Au) :	17 500 € kg]

A closer look at :

- > total launch support mass / scientific payload mass ratio:
 - <u>SOHO :</u> (237 500 + 1850 610) kg / 610 kg = 391
 - **<u>ROSETTA:</u>** (760 000 + 2900 186) kg / 186 kg = 4101

ratio depends on space mission trajectory

=> Scientific instrument mass saving is an important issue!

A closer look at :

launch loads : why they are important

for smaller instruments the Design Loads can be as high as 60 x gravity (60g) for larger instruments (> 50 kg) still 25 x gravity

=> Design must have : low mass ; high strength !

hostile space environment

- high vacuum
- zero-g
- radiation (electromagnetic & energetic particles)
- very low temperatures to dark space background
- extremely high thermal loads on sun illuminated side (e.g. Solar Orbiter)

examples for unusual effects, occuring in space environment :

- high vacuum cleans metallic surfaces design shall avoid metal-to-metal contacts !
- usual liquid lubricants evaporate in vacuum use vacuum-compatible dry lubrication films !
- energetic particles passing through semiconductor devices create charge clouds bit flips in memory cells (SEU single event upsets) implement hardware error correction function into design !
 - or –worse- create conductive channels in insulating layers between power conductors ⇔ self-sustaining short circuit (latch-up effect) implement latch-up protection circuits into design !

high vacuum : outgassing of organic materials; EUV "cracking" of molecular deposits on cold surfaces (detectors, optics) carbon black blinding

careful material selection ; cleanliness control program !

For all these reasons

- > space instruments are custom-designed one-of-a-kind items
- building these unique instruments follows a universal pattern :
 - staged development with milestone peer reviews
 - succession of models with increasing complexity and level of detail

Instrument Development Cycle : overview

> <u>Preliminary Design</u> (Phase A), ends with:

```
Preliminary Design Review (PDR)
```

hardware delivery : **STM** Structural / Thermal Model

Detailed Design (Phase B), ends with:

Critical Design Review (CDR)

hardware delivery : EM Electrical or Engineering Model

- Flight Hardware Manufacturing (Phase C)
- Assembly/Integration/Verification AIV (Phase D) ,

optional with mid-term Test Readiness Review (TRR); ends with :

Flight Acceptance or Pre-Shipment Review (FAR / PSR)

hardware delivery : FM Flight Model(s) + FS Flight Spare Model

A : Preliminary Design Phase :

- establish requirement flowdown : from mission requirements to payload requirements to instrument functional requirements to instrument specification
- > allocate mass and power budgets to subsystems
- > define mechanical and electrical interfaces between subsystems

(e.g. form factors for PCBs, connector types and arrangement etc)

- determine dimensions, volumes, shapes
- > write specifications for subsystems, that will be subcontracted to industry
- assemble STM (form, fit, no functions) = mass and thermal "dummy"
- Preliminary Design Review ; STM delivery

A : ROSETTA / OSIRIS STM examples:

Electronics Unit & CRB Unit assembly

cont. A : ROSETTA / OSIRIS STM examples:

> Electronics Unit prepared for thermal balance test

cont. A : ROSETTA / OSIRIS STM examples:

Electronics Unit sine vibration and static load test

cont. A : ROSETTA / OSIRIS STM examples:

> NAC & WAC STM delivery preparation

cont. A : ROSETTA / OSIRIS STM examples:

> NAC STM delivery to ESA and integration onto ROSETTA STM S/C

R. Meller / H. Hartwig

cont. A : ROSETTA / OSIRIS STM examples:

> OSIRIS STM integrated on ROSETTA for thermal verification test

cont. A : ROSETTA / OSIRIS STM examples:

> ROSETTA STM S/C incl. STM payload instr. prepared for vibration testing

cont. A : ROSETTA / OSIRIS STM examples:

> ROSETTA STM incl. STM payload instruments acoustic noise test setup

B : Detailed Design Phase :

- > define / select materials and processes
- design parts , select components
- > write basic operational code / software
- generate mathematical models for:
 - Structural analysis (Finite Element Model)
 - ➤ thermal analysis

validate models and pass on to S/C contractor (to be included into their global model)

> perform Failure Modes, Effects and Criticality Analysis (FMECA)

assemble EM (form & fit as good as possible, all functions; components not space rated);

functionality and interfaces (power / command & telemetry)

➤ Critical Design Review ; EM delivery

DAWN

Framing Camera (FC) Critical Design Review - CDR May 18 & 19, 2004

MPAe, Katlenburg-Lindau, Germany

Tuesday May 18, 2004

09:00	Welcome and Introduction – H. U. Keller					
09:10	Goal of the Meeting – D. Norris					
09:20	DAWN Project Status – C. Russell					
09:30	Overview FC – Science Objectives and Requirements - H. U. Keller					
09:50	FC Team Organigram and Top Level Workpackages – H. Sierks					
10:00	Instrument Concept and Implementation – H. Hartwig					
10:15	Coffee Break					
10:30 10:45 11:00 11:20 11:30	Camera Head Optical Design – H. Mosebach/K-T Lens System, Filters, Baffle and related Analysis – H. Mosebach/K-T CCD and Front End Electronics – S. Mottola Front Door Mechanism and Fail Safe Mechanism - H. Hartwig Filter Wheel Mechanism – H. Hartwig					
11:45	Discussion					
12:00	Lunch Break					
13:00 13:10 13:30 13:45 14:00	Electronics Box Electrical Interfaces Block Diagram & Grounding Concept – I. Hejja Data Processing Unit and Mass Memory – H. Michalik/IDA Power Converter Unit – R. Enge Mechanism Controller Unit – W. Kuelane Housekeeping Data Acquisition – I. Hejja					
14:15	FC Heater Concept - H. Sierks					
14:30 14:40 14:50	Resources Power Breakdown – H. Sierks Mass Breakdown – H. Hartwig MICD & Accommodation – H. Hartwig					
15:00	Coffee Break					
15:15 15:30	Instrument Modelling Structural Design – H. Hartwig Thermal Design – H. Hartwig with H. P. Schmidt/DLR					
16:00 16:10	Software Low Level Software - H. Michalik/IDA Operation Software - H. Michalik/IDA					
16:30	EGSE Configuration and Software - H. Michalik/IDA					

16:45 EM demonstration run in room S1-49

09:00	Model Philosophy and Schedule – H. Sier	rks
09:20	Qualification Approach and Environment	al Test Matrix – H. Sierks
09:30	QA Approach and Status – M. Richards	
09:45	Operations Plans – P. Gutierrez	
10:00	Calibration Plans – K. Schneider	
10:15	Coffee Break	
10:30	FC Data Processing Approach – R. Jauma	8010
10:50	Risk Mitigation Plan – H. Sierks	
11:00	Review of PDR RFAs – H. Sierks	
11:30	Discussion	
12:00	Lunch Break	
13:30	Board Summary, Action Items, and Wrap	-up
17:00	Adjourn	Board Members:
Splinte	r Meetings as required.	Dave Norris (Chainnan) Fred Vescelus John Schlue F. Gliem K. Wilhelm
		Attendees List:
		UCLA Chris Russell Steve Joy
		JPL Ed Miller Betina Pavri Khanara Ellers Paul Hesse Carol Polanskey Jerry Dalton
		Orbital Mike Violet

Wednesday May 19, 2004

Example :

Review

Design reviews :

Agenda for the

Critical Design

Framing Camera DAWN mission

R. Meller / H. Hartwig

MPAe

Example :

structural mathematical model

Finite Element Analysis

Framing Camera on the DAWN mission

model anlyzed with : MSC NASTRAN pre-/post-processing with : MSC PATRAN element type used : TET10(3D) element size : 4mm global edge length, smaller in critical areas model size : 153 715 elements 288 605 nodes 78 spring elements

22 multi-point constraints

A Journey to the Beginning of the Solar System

Finite Element Analysis : Modelling

Structural Analysis

Framing Camera

DAWN

MPAe – DLR – IDA

2

Example:

DAWN A Journey to the Beginning of the Solar System

Structural Analysis

Finite Element Analysis cont'd:

Finite Element Analysis : Dynamics : 3rd Eigenmode

Mode Nr.	Frequency in [Hz]	Remarks	
1	353.48	bending of mainly the radiator but also the baffle around y-axis	
2	377.18	swinging of tubus/baffle in y-direction (and bending around x-axis)	
3	414.42	swinging of tubus/baffle in x-direction (and bending around y-axis)	
4	447.40	bending of the radiator around z-axis	
5	670.00	longitudinal vibration of the structure in z-direction	
6	737.16	bending of the baffle around y-axis	
7	813.82	local vibrations	
8 937.80 2 nd mode for si in y-direction		2 nd mode for swinging of tubus/baffle in y-direction	
9	990.14	longitudinal vibrations in z-direction	
10	1049.16	bending of radiator around y-axis	

Framing Camera

MPAe – DLR – IDA

R. Meller / H. Hartwig

10

Example :

thermal mathematical model

Finite Difference Analysis

(ESATAN/ESARAD)

Framing Camera on the DAWN mission

Dawn Framing Camera

Thermal Control Subsystem

Steady State Analysis - Operations (continued)

• Results : cold case heat fluxes from CCD and adjacent nodes to space

H.P. Schmidt, DLR, Institute of Space Simulation - DAWN FC CDR, 2004-05-18 & 19

Date:

Page:

Reference: RO-RIS-Issue:

Rev.:

Example :

Delivery reviews :

Documentation to be ready before instrument H/W delivery

•Preliminary Design Review (STM)

•Critical Design Review (EM)

•Flight Acceptance Review (FM, FS)

OSIRIS Camera System on ROSETTA

1 Certificate of Conformance
2 Build Standard
3 History Record
4 Connector Mating Cycle Record
5 Operating Time / Cycle Record 6 Requirements Document
Sofware / Firmware 8.1 Functional Description 8.2 Program Flowcharts / Structograms 8.3 Program Lists / Source Code 9 Schematics
9.1 Circuit Diagrams. 9.2 FPGA Diagrams
10.1 Placement Plan 10.2 PCB Routing
11.1 Connector Pin Allocations 11.2 Connector Layout Drawings 11.3 Connector Data Sheets 12 Sofware / Firmware /
12.1 Functional Description
13.1 Mechanics Interface Drawings 13.2 Detailed Mechanics Drawings 14 Declared Components List
15 Declared Materials List
16 Declared Process List
17 Manufacturing
17.1 Manufacturing Flow Record
17.2 Manufacturing Procedures. 18 Environmental Tests. 18.1 Test Procedures. 18.2 Test Protocols. 19 Electrical Specification. 19.1 Characterization. 19.2 Timing Diagrams.

Table of contents

List of Figures

Figure 1: Sample figure (caption below figure, use "insert picture" to create figure.....

List of Tables

Table 1: Sample table (caption above table, use "insert caption - label table")

C / D : Assembly / Integration / Verification :

- Controlled and documented flight parts production & procurement; population of Printed Circuit Boards; in Clean Room ; ESD protected etc
- Testing at subsystem and system level:
 - Functional tests , including S/C interface verification (with S/C simulator)
 - Performance Tests / Calibration
 - Environmental tests :
 - > Vibration
 - Pyro-Shock
 - Thermal-Vacuum / Thermal- Balance
 - Mechanism Lifetime
 - Electro-Magnetic Compatibility (EMC)
 - Physical properties
 - Interface Metrology
 - > Mass
 - > Center of Gravity
 - Moments of Inertia

mple: osir	IS E-Box ar	d Modu nd Test	le Test t Matrix	t Philos «	sophy		_
Test item	QM	STM	EEM	FM	FS	responsible	
Physical Properties (COG, Mass, Dimensions)	M/X	x	M/X	M/X	M/X	AII / MPAE	
Vibration	Q	Q		A	A	AII / MPAE	
Shock	Q	(Q)				All / MPAE	
Acoustic Noise	tbd.	(X)				AII / MPAE	
Thermal Balance	M/X	х	Х			AII / MPAE	
Thermal Vacuum	Q			A	A	AII / MPAE	
Mechanical Functional	M/X	M/X	M/X	M/X	M/X	AII / MPAE	
Electrical Functional	M/X		M/X	M/X	M/X	AII / MPAE	
Optical Functional							
Electrical Test (Grounding, Bonding, Isolation)	M/X		M/X	M/X	M/X	AII / MPAE	Models: QM: Qualification Model not delivered to ESA STM : Structural Thermal Model] (build by MPAE) EEM : Electrical Engineering Model \ delivered
EMC (Conducted and Radiated Interference)	(M) / X			X conduc ted only	X conduc ted only	Ali / MPAE	FM : Flight Model / to ESA FS : Flight Spare Model / Module Tests, to be performed at the responsible institutes or manufacturers prior E-Box integration: M : Required, no specific test level () : Desirable
DC Magnetic Properties	(M) / X			Х	Х	AII / MPAE	Instrument Tests (Modules integrated in E-Box), to be done at MPAE or testhouse, supported by responsible institutes:
Alignment							A : Acceptance Level X : no specific test level
Calibration	M/X		(M)/(X)	M/X	M/X	AII / MPAE	() : Desirable : Not Required

MPS

Vibration testing :

simulates launch loads (structural and acoustic)

power of ARIANE-5 at launch = 30 million h-p ; acoustic pressure level ~145 dB ! Test :

on electrodynamic shaker systems: giant "loudspeaker" coil drive , w/o membrane sine test : swept single frequency ; control = peak acceleration

random test: wide-band random "noise" spectrum; control = power spectral density profile

frequency	in-plane (X and Y)	frequency	out-of-plane (Z)
5 Hz to 20 Hz	9.3 mm(0-p)	5 Hz to 18 Hz	11.5 mm(0-p)
20 Hz to 70 Hz	15 g const.	18 Hz to 50 Hz	30 g const.
70 Hz to 100 Hz	8 g const.	50 Hz to 70 Hz	20 g const.
		70 Hz to 100 Hz	15 g const.
sweep rate	2 oct/min		2 oct/min

SIR-2 Sine qualification levels (TBC by ISRO) for O-Box ; on ASS panel extension SIR-2 Random qualification levels (TBC by ISRO) for O-Box ; on ASS panel extension

frequency	in-plane p.s.d. (X and Y axis)	out-of-plane p.s.d. (Zaxis)
20 Hz to 100 Hz	+ 3 dB/octave	+ 3 dB/octave
100 Hz to 700 Hz	0.1 g ² /Hz	0.3 g²/Hz
700 Hz to 2000 Hz	- 3 dB/octave	- 6 dB/octave
RMS level	11.8	18.2 g

Example : **ROSETTA Lander STM** on shaker at IABG, Munich

measurement accelerometer wiring

Thermal Vacuum / Thermal Balance Test :

- tests thermal behaviour in special test chambers under space conditions (high vacuum ; cold space ; solar illumination / planetary thermal emission) passive protective systems:
 - Multi-Layer Insulation (MLI) ;
 - thermal radiators / absorbers
 - second-surface mirrors (reject heat against solar irradiation)
- active protective systems :
 - heaters (electrical or radoactive)
 - coolers (Stirling)
 - capillary heat pipes (zero-g)

Thermal-Vacuum / Thermal-Balance Test of ROSETTA Lander

at IABG, Munich

ROSETTA flight spacecraft inside Large Space Simulator test chamber at ESTEC, NL

EMC testing of ROSETTA Lander at IABG, Munich:

radiated & conducted emission,

radiated & conducted susceptibility

SUMMARY & General Recommendations :

- > Keep track of requirement flowdown !
- > Assemble (and maintain!) a good technical team !
- > Start design with resource margins (25% min.) !
- Take design reviews serious they help you !
- Nurse back-up solutions along with the main development !
- > Keep documentation up-to-date !!! you need it after launch!
- Fest test test !!! (but don't overstress the Flight Unit !)
- > Hold post-delivery "Lessons Learned" review with your team !

