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Fundamentals of wave kinetic theory

• Introduction to the subject

• Perturbation theory of electrostatic fluctuations

• Landau damping - mathematics

• Physics of Landau damping

• Unmagnetized plasma waves

• The plasma dispersion function

• The dielectric tensor of a magnetized plasma

Introduction to the subject

The most general theory of plasma wave uses kinetic theory.

• Velocity distributions based on the Vlasov equation

• Wave equation based on the kinetic form of the induced 
current density (Maxwell‘s equations unchanged)

• The dielectric tensor includes particle dynamics

• Self-consistent charge separation fields and currents 
become important

• Wave-particle interactions are accounted for

• Thermal effects lead to spatial dispersion and dissipation 
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Perturbation theory of electrostatic fluctuations

Consider a one-dimensional unmagnetized plasma. Vlasov equation:

Purely electrostatic field satisfies the Poisson equation:

Consider fluctuations (waves) on a quiet background such that the 
decomposition holds:

• Assume that the perturbations are linear, δf  <<  f0

• Assume stationary background VDF,   f0 = f0(v)

Langmuir waves
Consider high-frequency fluctuations and electrons with immobile ions. 
The Vlasov-Poisson system reduces to the two equations:

Because the system is linear we may solve it by Fourier transformation
in space. Note that ∂/∂x transforms into ik, such that we get the coupled 
system:

We can solve this system by Laplace transformation. 
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Laplace transformation
The Laplace transform (variable p = γ - iω ) and its inversion are 

Here a is a real, large 
enough constant, and the 
integration contour is a line
parallel to the imaginary 
axis in the complex p plane, 
so that all singularities of 
the integrand are to the 
right in order to warrant 
convergence of the integral.

Laplace transform of the electric field I
Exercise: Calculate the Fourier-Laplace transform of the perturbations:

The inhomogeneity g(k,υ) = δf (k,υ, t=0) is the initial perturbation of the VDF. 
The electric field has poles at p = -ikυ. Here the new term ε (k, p) is the well 
known dielectric function, which only depends on the speed-gradient of the 
background distribution function and reads:

The Laplace integral will have poles where ε (k, p) = 0. The related solutions 
may be called,  pi(k) = γi- iωi , where p is split in its real and imaginary part.
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Laplace transform of the electric field II
Integrating along a = const and then deforming the contours, whereby we 
pull a into the negative direction to position a‘ far beyond all poles which
become encircled. The integral will be the sum of all residua, ri(k), at the 
poles, pi(k), and of the contribution from the picewise continuous path 
parallel to the imaginary axis, where use has been made of the Cauchy‘s 
intergral theorem (check in a functional analysis book).

The integral contribution taken at a' 
vanishes in the long-time limit, t -> ∞, as:

Of all residua only the one with smallest real part survives and yields as time-
asymptotic solution the weakly damped eigen oscillation

Landau damping I
Langmuir waves when treated kinetically:

• Large number of wave modes (spread in VDF)

• Harmonic waves only appear asymptotically in time

• Collisionless damping appears, if γγγγl(k) < 0.

• Plasma instability arises, if γγγγl(k) > 0.

Plasma in thermal 
equilibrium, 1-D
Maxwell VDF:

Then the dielectric function (after partial) integration reads: 



5

Landau damping II

The Laplace integral may have poles where εεεε (k, p) = 0. Note that this
is a complex function. The solutions may be called  ipi(k) = ωi + iγi . The 
integration is carried out in the complex v-plane. Integration contours for 
three possible positions of the pole: 

Contribution 
from 
negative 
pole

General damping rate

Let us split the dielectric function ε (k, ω , γ) in its real and imaginary 
part and expand about the real axis, assuming ω >> γ . This gives:

Setting the real and imaginary parts separately equal to zero leads to the 
general solution for electrostatic waves:

The first equation gives the real frequeny of the eigenmode, 
the second the damping rate of any weakly damped mode. 
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Damped Langmuir waves

Expanding (p+ikυ)-2 in the real part of the dielectric function ε (k, p) gives:

Exercise: Carry out the three 
integrations (first moments of 
the Maxwellian), a procedure 
which yields the dispersion of
Langmuir waves:

The first equation gives the frequeny of the Langmuir mode, the 
second is the Landau damping term due to thermal decorrelation
effects.  Note that for Te -> 0,  λD -> 0, and thus γ -> 0.

Physics of Landau damping I

The collisionless dissipation of plasma oscillations is due to the
subtle effects of the few particles being in resonance with the 
waves, i.e. with speeds close to the phase speed:  υ = vph= ω /k. 

Maxwellian (left) and schematic wave-electron interaction      
(wave as a quantum of momentum and energy)
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Physics of Landau damping II

Individual wave-particle interaction is considered as an elastic collision 
conserving energy and momentum. Why then wave damping?
The reason is the asymmetry of the Maxwellian VDF at vph = ω /k; there
are more slow than fast particles. 

• Wave looses more momentum/energy to slow particles 

• Wave gains less momentum/energy from fast particles

The retarded and accelerated 
particles, right and left of the 
resonance, are accumulated at
ω /k. The VDF deforms and 
flattens, so as to locally 
balance gain and loss,   

->  plateau formation.

Ion acoustic waves I
Landau damping effects all wave modes in a thermal plasma. In addition, 
there are new modes owing their existance to the finite temperature. Consider 
an ion-electron plasma. The dispersion equation (with ip = ω + iγ) reads:

Such an expansion of (υ - ip/k)-2 in the dielectric function ε (k, p) gives the
approximate real part of the dispersion relation:

Exercise: Expand the electron 
and ion integrals such that the 
inequalities are fulfilled:
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Ion acoustic waves II
Solving the previous equation interatively gives the modified ion acoustic
dispersion containing finite ion temperature effects:

In the long-wavelength limit, (kλD)2 << 1, this  yields the dispersionless ion 
acoustic wave, ω = ± kcia‘ , with a slightly modified ion acoustic speed.

In the long-wavelength limit
and for cold ions (Ti << Te)
the damping is only small.

Gurnett et al., JGR 84, 541, 1979

Ion acoustic waves at a shock

ω = ωs + k•V ωs = csk/(1+k2λD
2)1/2
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Electron acoustic waves

Consider an electron plasma with two component, a hot (nh) and cold (nc)
one, with Tc << Th , such as core and halo in the solar wind electron VDF. 
Then an electron acoustic wave may exist, with the dispersion:

Electromagnetic waves in unmagnetized plasma
In previous lectures we derived the general wave and dispersion equations. 
What needs to be calculated kinetically is the induced current density, by 
means of the perturbed VDF. Since we are interested in the final oscillating 
state, we can simply use a plane wave ansatz in space and time and Fourier 
transform the perturbed Vlasov equation. This gives:

The resulting dispersion relation for a warm unmagnetized plasma reads:

Result: Dispersion of a free ordinary wave
mode for large phase velocities (ω >> k·v). 
It is practically undamped as long as 
relativistic particle effects do not matter. 
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The plasma dispersion function

In the calculation of the warm plasma 
dispersion relations one continuously 
encounters singular integrals of the kind:

where f0(x) is some equilibrium function, which is usually an analytic 
function of its arguments, x, that is interpreted as the real part of a complex 
variable, z=x+iy. The integral is taken along the entire real axis. For a
Maxwellian this function is called the plasma dispersion function, which 
is related to the complex error function, Z(ζ)=i√π erf(ζ).

For ions (electrons) and electrostatic waves the argument is: ζi,e = ω /kvthi,e. 

Dispersion relation for a magnetized plasma
What we have to calculate here kinetically is the induced current density,
by means of the perturbed VDF. The linearized Vlasov equation reads:

One can integrate this Vlasov equation in time over the unperturbed 
helical particle orbits to obtain δf(v), and then sum over the current 
contributions of the various species (left as a tedious exercise.....) with a 
gyrotropic VDF. After considerable algebra, the full dielectric tensor is: 
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Particle resonances

As in the discussion of the Landau method for electrostatic modes, the 
damping of the eigenmodes of a magnetized plasma is largely determined by 
the poles in the integrand of the dielectric tensor. They are at the resonance
positions, where

This corresponds to cyclotron resonance or in case, l = 0, to the 
Landau resonance, where the particle speed matches the phase speed.

The Doppler-shifted frequency of a resonant particle is a multiple 
harmonic of their gyrofrequency   -->    constant electric field
(in a circularly polarized wave).      -->    acceleration or deceleration

The resonant particles are responsible for the kinetic effects 
(wave damping and growth) in a magnetized warm plasma.

Electrostatic plasma waves

• Magnetized Langmuir and ion-acoustic waves

• Electron and ion Bernstein waves

• Lower- and upper-hybrid waves

Electron-cyclotron or Bernstein wave 
dispersion for k|| = 0. Here Λl is the modified
Bessel function, with ηe=0.5(k⊥vthe⊥/ωge)2.
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Electromagnetic plasma waves

• Whistler mode waves

• Ion cyclotron waves

• Kinetic Alfvén waves

Kinetic Alfvén waves propagate across the magnetic field and obey
k|| << k⊥ ≈ 1/rgi. They contain thermal effects of the ions. For cold 
electrons the dispersion is:


