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Magnetohydrodynamic waves

• Ideal MHD equations

• Linear perturbation theory

• The dispersion relation

• Phase velocities

• Dispersion relations (polar plot)

• Wave dynamics 

• MHD turbulence in the solar wind

• Geomagnetic pulsations

Ideal MHD equations
Plasma equilibria can easily be perturbed and small-amplitude waves and 
fluctuations can be excited. Conveniently, while considering waves one starts 
from ideal plasmas. The damping of the waves requires consideration of some 
kind of disspation, which will not be done here. MHD (with ideal Ohm‘s law
and no space charges) in the standard form (and with P(n) given) reads:
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MHD equilibrium and fluctuations

We assume stationary ideal homogeneous conditions as the intial state of the 
single-fluid plasma, with vanishing average electric and velocity fields, overal 
pressure equilibrium and no magnetic stresses. These assumptions yield:

These fields are decomposed 
as sums of their background 
initial values and space- and 
time-dependent fluctuations
as follows: 

Linear perturbation theory

Because the MHD equations are nonlinear (advection term and 
pressure/stress tensor), the fluctuations must be small.
-> Arrive at a uniform set of linear equations, giving the 
dispersion relation for the eigenmodes of the plasma.
-> Then all variables can be expressed by one, say the 
magnetic field.

Usually, in space plasma the background magnetic field is 
sufficiently strong (e.g., a planetary dipole field), so that 
one can assume the fluctuation obeys:

In the uniform plasma with straight field lines, the field 
provides the only symmetry axis which may be chosen 
as z-axis of the coordinate system such that:   B0=B0ê.
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Linearized MHD equations I
Linarization of the MHD equations leads to three equations 
for the three fluctuations, δn, δv, and δB: 

Using the adabatic pressure 
law, and the derived sound 
speed, cs

2= p0/min0, leads to an 
equation for δp and gives:

Linearized MHD equations II
Inserting the continuity and pressure equations, and using the Alfvén 
velocity, vA=B0/(µ0nmi)1/2, two coupled vector equations result:

Time differentiation of the first and insertion of the second equation yields a 
second-order wave equation which can be solved by Fourier transformation.
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Dispersion relation

The ansatz of travelling plane waves,

with arbitrary constant amplitude, δv0, leads to the system,

To obtain a nontrivial solution the determinant must vanish, which means 

Here the magnetosonic speed is given by cms
2 = cs

2 + vA
2.  The wave vector 

component perpendicular to the field is oriented along the x-axis,  k= kêz+ k⊥êx.

Alfvén waves

Inspection of the determinant shows that the fluctuation in the 
y-direction decouples from the other two components and has 
the linear dispersion

This transverse wave travels parallel to the field. It is called 
shear Alfvén wave. It has no density fluctuation and a constant 
group velocity, vgr,A = vA, which is always oriented along the 
background field, along which the wave energy is transported.

The transverse velocity and magnetic field components are
(anti)-correlated according to: δvy/vA = ± δBy/B0, for
parallel (anti-parallel) wave propagation. The wave electric 
field points in the x-direction: δEx =  δBy/vA
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Magnetosonic waves

The remaing four matrix elements couple the fluctuation 
components, δv and δv⊥. The corresponding determinant reads:

This bi-quadratic equation has the roots:

which are the phase velocities of the compressive fast and 
slow magnetosonic waves. They depend on the propagation 
angle θ, with k⊥

2/k2 = sin2θ. For θ = 900 we have: ω = kcms, 
and θ = 00:

Phase-velocity polar diagram of MHD waves
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Dependence of phase velocity on propagation angle 

Magnetosonic wave dynamics
In order to understand what happens physically with the 
dynamic variables, δvx, δBx, δB, δv, δp, and δn, inspect 
again the equation of motion written in components:

Parallel direction: Parallel pressure variations 
cause parallel flow.

Oblique direction:

Total pressure variations (ptot=p+B2/2µ0 ) accelerate (or 
decelerate) flow, for in-phase (or out-of-phase) variations
of δp and δB, leading to the fast and slow mode waves.
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Magnetohydrodynamic waves

• Magnetosonic waves

compressible

- parallel slow and fast

- perpendicular fast

cms = (cs
2+vA

2)-1/2

• Alfvén wave

incompressible

parallel and oblique

vA = B/(4πρ)1/2

Alfvén waves in the solar wind

Neubauer et al., 1977 δδδδv = ±±±± δδδδvA
Helios
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Alfvénic fluctuations

Tsurutani et al., 1997

Ulysses observed many such 
waves (4-5 per hour) in fast 
wind over the poles:

• Arc-polarized waves

• Phase-steepened 

Rotational discontinuity:

∆∆∆∆V = ± ∆∆∆∆VA

Finite jumps in velocities 
over gyrokinetic scales

Compressive fluctuations in the solar wind

Marsch and Tu, JGR, 95, 8211, 1990 Kolmogorov-type turbulence
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Integral invariants of ideal MHD  

E  = 1/2 ∫ d3x (V2 + VA
2)        Energy

Hc =   ∫ d3x (V• VA)              Helicity

Hm =  ∫ d3x (A• B)    Magnetic helicity

B = ∇×∇×∇×∇×A

Elsässer variables: Z± = V ± VA

E± = 1/2 ∫ d3x (Z±)2 = ∫ d3x e±(x)

Magnetohydrodynamic turbulence in space plasmas

Geomagnetic pulsations
Fast magnetic fluctuations of the Earth‘s surface magnetic field (few mHz up to 
a few Hz), corresponding to oscillation periods from several hundreds to 
fractions of seconds. The pulsating quasi-sinusoidal (continuous pulsations) 
disturbances are observed globally and associated with Alfvén (and magneto-
acoustic) waves. The irregular pulsations are short-lived and localized. 
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Field line resonances
The shown Pc5 pulsations are caused by oscillations of the Earth magnetic 
field and explained as standing single-fluid shear Alfvén waves, whose 
wavelengths must fit the geometry. The length, l, of the fieldline between 
two reflection point must be a multiple of half the wavelength, λ, implying: 
νhλ=2l, with νh=1,2,3,... From the dispersion relation, with the average 
Alfvén velocity, <vA>, along the fieldline one finds:

Fundamental poloidal field-line resonances

Magnetosheath turbulence as source of pulsations

Excitation of global 
magnetospheric 
pulsations through 
driver at matching 
frequency: ωex = ωres. 

Excitation scenarios:
• Surface waves excited by Kelvin-Helmholtz instability driven by flow 
around magnetopause  

• Compressional waves leaking from magnetosheath through polar cusp into 
magnetosphere 


