Magnetohydrodynamic waves

- Ideal MHD equations
- Linear perturbation theory
- The dispersion relation
- Phase velocities
- Dispersion relations (polar plot)
- Wave dynamics
- MHD turbulence in the solar wind
- Geomagnetic pulsations

Ideal MHD equations

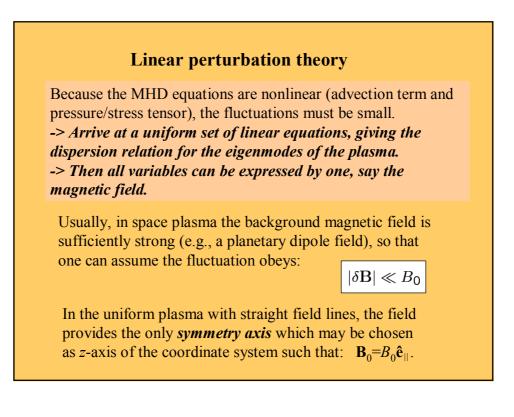
Plasma equilibria can easily be perturbed and small-amplitude *waves and fluctuations* can be excited. Conveniently, while considering waves one starts from ideal plasmas. The damping of the waves requires consideration of some kind of disspation, which will not be done here. **MHD** (*with ideal Ohm's law and no space charges*) *in the standard form* (*and with* P(*n*) *given*) *reads:*

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{v}) = 0$$
$$\frac{\partial (nm\mathbf{v})}{\partial t} + \nabla \cdot (nm\mathbf{v}\mathbf{v}) = -\nabla \cdot \left(\mathbf{P} + \frac{B^2}{2\mu_0}\mathbf{I}\right) + \frac{1}{\mu_0}\nabla \cdot (\mathbf{BB})$$
$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$
$$\nabla \cdot \mathbf{B} = 0$$

MHD equilibrium and fluctuations

We assume *stationary* ideal *homogeneous* conditions as the initial state of the single-fluid plasma, with vanishing average electric and velocity fields, overal *pressure equilibrium* and no magnetic stresses. These assumptions yield:

	1				
		\mathbf{v}_0	=	0	
		\mathbf{E}_{O}	=	0	
	$\nabla \left(p_0 + B_0^2 / 2 \right)$	(μ_0)	=	0	
	$(\mathbf{B}_0 \cdot \nabla)$				
These fields are decomposed as sums of their background initial values and space- and time-dependent <i>fluctuations</i>		n	=	$n_0 +$	$-\delta n$
		v	=	$\delta \mathbf{v}$	
		\mathbf{E}	=	$\delta \mathbf{E}$	
as follows:	<i>v</i>	В	=	B ₀ -	⊦δB



Linearized MHD equations I

Linarization of the MHD equations leads to three equations for the three fluctuations, δn , δv , and δB :

$$\frac{\partial \delta n}{\partial t} + n_0 \nabla \cdot \delta \mathbf{v} = 0$$
$$m_i n_0 \frac{\partial \delta \mathbf{v}}{\partial t} = -\nabla \left(\delta p + \frac{1}{\mu_0} \mathbf{B}_0 \cdot \delta \mathbf{B} \right) + \frac{1}{\mu_0} \left(\mathbf{B}_0 \cdot \nabla \right) \delta \mathbf{B}$$
$$\frac{\partial \delta \mathbf{B}}{\partial t} = \left(\mathbf{B}_0 \cdot \nabla \right) \delta \mathbf{B} - \mathbf{B}_0 \left(\nabla \cdot \delta \mathbf{v} \right)$$

Using the adabatic pressure law, and the derived sound speed, $c_s^{2=} p_0/m_i n_0$, leads to an equation for δp and gives:

$$\frac{\partial \delta p}{\partial t} = m_i c_s^2 \frac{\partial \delta n}{\partial t} = -m_i n_0 c_s^2 \nabla \cdot \delta \mathbf{v}$$

Linearized MHD equations II

Inserting the continuity and pressure equations, and using the Alfvén velocity, $\mathbf{v}_A = \mathbf{B}_0 / (\mu_0 n m_i)^{1/2}$, two coupled vector equations result:

$$\frac{\partial \delta \mathbf{v}}{\partial t} = v_A^2 \nabla_{\parallel} \left(\frac{\delta \mathbf{B}_{\perp}}{B_0} \right) - \nabla \left(\frac{\delta p}{m_i n_0} \right)$$
$$\frac{\partial}{\partial t} \left(\frac{\delta \mathbf{B}}{B_0} \right) = \nabla_{\parallel} \delta \mathbf{v}_{\perp} - \hat{\mathbf{e}}_{\parallel} \left(\nabla_{\perp} \cdot \delta \mathbf{v}_{\perp} \right)$$

Time differentiation of the first and insertion of the second equation yields a second-order wave equation which can be solved by *Fourier transformation*.

$$\begin{array}{ll} \frac{\partial^2 \delta \mathbf{v}}{\partial t^2} &=& c_{ms}^2 \nabla \left(\nabla \cdot \delta \mathbf{v} \right) \\ &+& v_A^2 \left(\nabla_{\parallel}^2 \delta \mathbf{v} - \nabla \nabla_{\parallel} \delta v_{\parallel} - \widehat{\mathbf{e}}_{\parallel} \nabla_{\parallel} \nabla \cdot \delta \mathbf{v} \right) \end{array}$$

Dispersion relation

The ansatz of travelling plane waves,

 $\delta \mathbf{v} = \delta \mathbf{v}_0 \exp(i\mathbf{k} \cdot \mathbf{x} - i\omega t)$

with arbitrary constant amplitude, δv_0 , leads to the system,

$$\left[\left(\omega^2 - k_{\parallel}^2 v_A^2\right)\mathbf{I} - c_{ms}^2 \mathbf{k}\mathbf{k} + \left(\mathbf{k}\hat{\mathbf{e}}_{\parallel} + \hat{\mathbf{e}}_{\parallel}\mathbf{k}\right)k_{\parallel}v_A^2\right]\cdot\delta\mathbf{v}_0 = 0$$

To obtain a nontrivial solution the determinant must vanish, which means

$$\begin{bmatrix} \omega^{2} - v_{A}^{2}k_{\parallel}^{2} - c_{ms}^{2}k_{\perp}^{2} & 0 & -c_{s}^{2}k_{\parallel}k_{\perp} \\ 0 & \omega^{2} - v_{A}^{2}k_{\parallel}^{2} & 0 \\ -c_{s}^{2}k_{\parallel}k_{\perp} & 0 & \omega^{2} - c_{s}^{2}k_{\parallel}^{2} \end{bmatrix} \begin{bmatrix} \delta v_{0x} \\ \delta v_{0y} \\ \delta v_{0y} \\ \delta v_{0y} \end{bmatrix} = 0$$

Here the *magnetosonic speed* is given by $c_{ms}^2 = c_s^2 + v_A^2$. The wave vector component perpendicular to the field is oriented along the x-axis, $k = k_{\parallel} \hat{\mathbf{e}}_z + k_{\perp} \hat{\mathbf{e}}_x$.

Alfvén waves

Inspection of the determinant shows that the fluctuation in the *y*-direction decouples from the other two components and has the linear dispersion

$$\omega_A=\pm k_{\parallel} v_A$$

This *transverse wave* travels parallel to the field. It is called *shear Alfvén wave*. It has no density fluctuation and a constant group velocity, $\mathbf{v}_{gr,A} = \mathbf{v}_A$, which is always oriented along the background field, along which the wave energy is transported.

The transverse velocity and magnetic field components are (anti)-correlated according to: $\delta v_y/v_A = \pm \delta B_y/B_0$, for parallel (anti-parallel) wave propagation. The wave electric field points in the x-direction: $\delta E_x = \delta B_y/v_A$

Magnetosonic waves

The remaing four matrix elements couple the fluctuation components, δv_{\parallel} and δv_{\parallel} . The corresponding determinant reads:

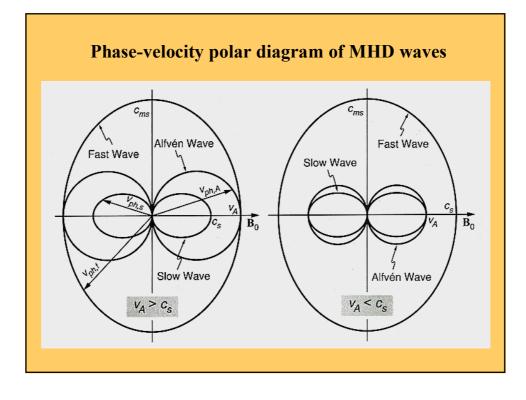
$$\omega^4 - \omega^2 c_{ms}^2 k^2 + c_s^2 v_A^2 k^2 k_{\parallel}^2 = 0$$

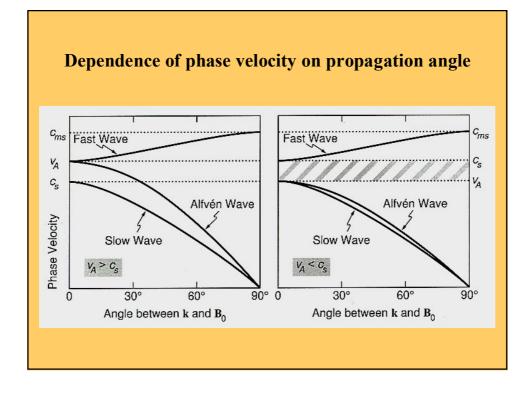
This bi-quadratic equation has the roots:

$$\omega_{ms}^2 = \frac{k^2}{2} \left\{ c_{ms}^2 \pm \left[\left(v_A^2 - c_s^2 \right)^2 + 4 v_A^2 c_s^2 \frac{k_\perp^2}{k^2} \right]^{1/2} \right\}$$

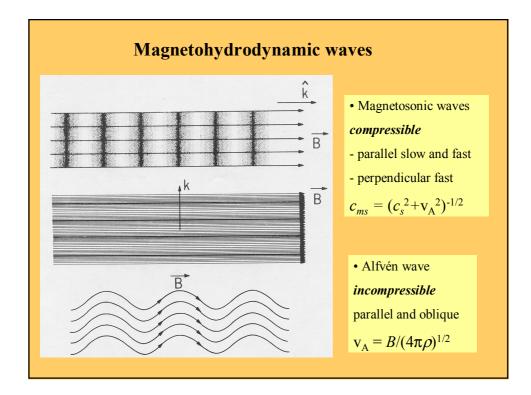
which are the phase velocities of the compressive *fast and slow magnetosonic waves*. They depend on the propagation angle θ , with $k_{\perp}^2/k^2 = sin^2\theta$. For $\theta = 90^\circ$ we have: $\omega = kc_{ms}$, and $\theta = 0^\circ$:

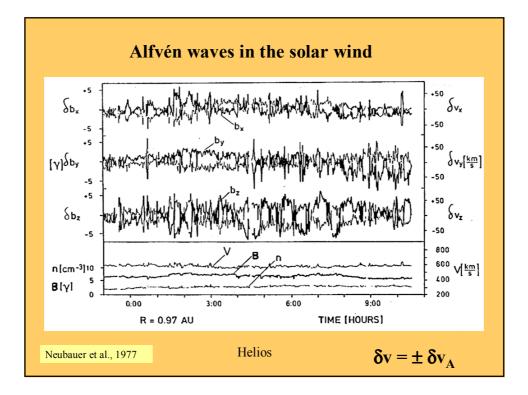
$$\omega^{2} = \frac{1}{2}k^{2} \left[c_{s}^{2} + v_{A}^{2} \pm \left(c_{s}^{2} - v_{A}^{2} \right) \right]$$

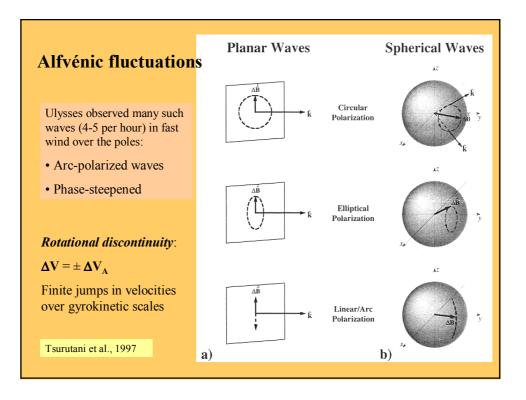


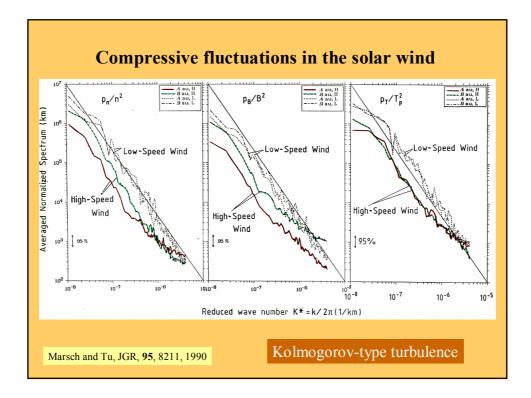


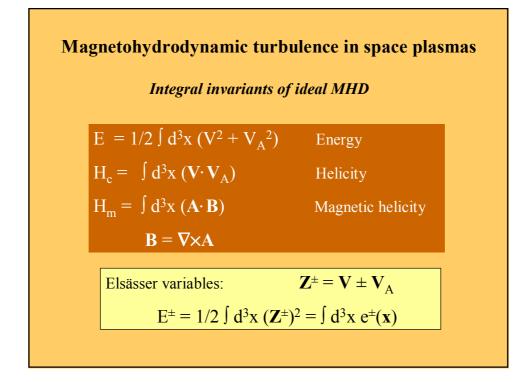
Magnetosonic wave dynamics					
In order to understand what happens physically with the dynamic variables, δv_x , δB_x , $\delta B_{ }$, $\delta v_{ }$, δp , and δn , inspect again the equation of motion written in components:					
$\omega \delta \mathbf{v} = \frac{\mathbf{k}}{m_i n_0} \left(\delta \mathbf{y} \right)$	$p + \frac{1}{\mu_0} \mathbf{B}_0 \cdot \delta \mathbf{B} ight)$	$-rac{\mathbf{k}\cdot\mathbf{B}_{0}}{\mu_{0}m_{i}n_{0}}\delta\mathbf{B}$			
Parallel direction:	$\omega v_{\parallel} = \frac{k_{\parallel} \delta p}{m_i n_0}$	Parallel pressu cause parallel			
Oblique direction:	$\omega \left(k_{\parallel} v_{\parallel} + k_{\perp} v_{a} \right)$	$\left(x\right) = \frac{k^2 \delta p_{tot}}{m_i n_0}$			
Total pressure variations $(p_{tot}=p+B^2/2\mu_0)$ accelerate (or decelerate) flow, for in-phase (or out-of-phase) variations of δp and δB , leading to the fast and slow mode waves.					

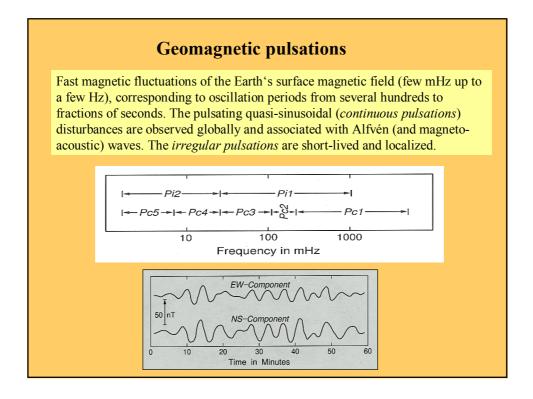












Field line resonances

The shown Pc5 pulsations are caused by oscillations of the Earth magnetic field and explained as standing single-fluid shear Alfvén waves, whose wavelengths must fit the geometry. The length, *l*, of the fieldline between two reflection point must be a multiple of half the wavelength, λ , implying: $v_h \lambda = 2l$, with $v_h = 1,2,3,...$ From the dispersion relation, with the average Alfvén velocity, $\langle v_A \rangle$, along the fieldline one finds:

