Boundaries, shocks and discontinuities

- Fluid boundaries
- General jump conditions
- Rankine-Hugoniot conditions
- Set of equations for jumps at a boundary
- Discontinuities
- Shock types
- Bow shock geometry

Fluid boundaries

Equilibria between plasmas with different properties give rise to the evolution of boundaries, which take the form of narrow (gyrokinetic scales) layers called *discontinuities*. Conveniently, one starts from ideal plasmas (without dissipation) on either side. The transition from one side to the other requires some *disspation*, which is concentrated in the layer itself but vanishes outside. MHD (with ideal Ohm's law and no space charges) in conservation form reads:

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{v}) = 0$$
$$\frac{\partial (nm\mathbf{v})}{\partial t} + \nabla \cdot (nm\mathbf{v}\mathbf{v}) = -\nabla \cdot \left(\mathbf{P} + \frac{B^2}{2\mu_0}\mathbf{I}\right) + \frac{1}{\mu_0}\nabla \cdot (\mathbf{BB})$$
$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$
$$\nabla \cdot \mathbf{B} = 0$$

Definitions, normal and jumps

Changes occur perpendicular to the discontinuity, parallel the plasma is uniform. The normal vector, **n**, to the surface $S(\mathbf{x})$ is defined as:

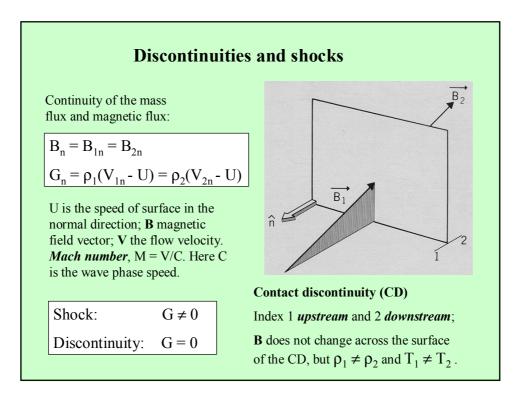
 $\mathbf{n} = -\frac{\nabla \mathcal{S}}{|\nabla \mathcal{S}|}$

Any closed line integral (along a rectangular box tangential to the surface and crossing S from medium 1 to 2 and back) of a quantity X reduces to

$$\oint_{S} \frac{dX}{dn} dn = 2 \int_{1}^{2} \frac{dX}{dn} dn = 2 (X_{2} - X_{1}) = 2[X]$$

Since an integral over a conservation law vanishes, the gradient operation can be replaced by

$ \begin{array}{rcl} \nabla X & \to & \mathbf{n}[X] \\ \nabla \cdot \mathbf{X} & \to & \mathbf{n} \cdot [\mathbf{X}] \end{array} $	Transform to a frame moving with the discontinuity at local speed, U. Because of <i>Galilean invariance</i> , the time derivative becomes:
$ abla imes \mathbf{X} \ o \ \mathbf{n} imes [\mathbf{X}]$	$\partial/\partial t = -\mathbf{U}\cdot\nabla = -U\cdot\mathbf{n}(\partial/\partial n)$



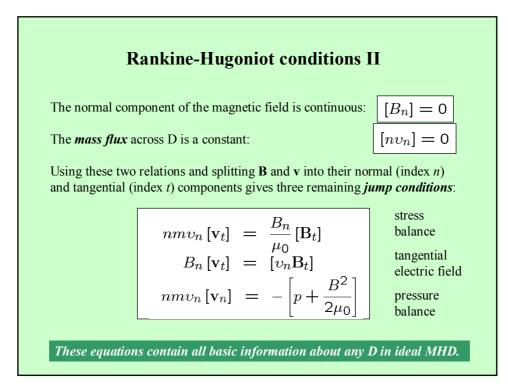
Rankine-Hugoniot conditions I

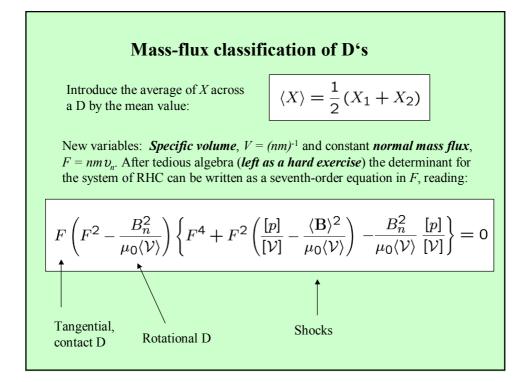
In the *comoving frame* (v' = v - U) the discontinuity (D) is stationary so that the time derivative can be dropped. We *skip the prime* and consider the situation in a frame where D is at rest. We assume an isotropic pressure, P=p1. Conservation laws transform into the *jump conditions* across D, reading:

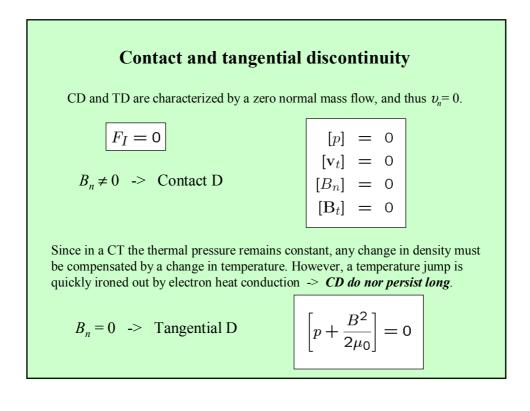
$$\mathbf{n} \cdot [n\mathbf{v}] = 0$$
$$\mathbf{n} \cdot [n\mathbf{v}\mathbf{v}] + \mathbf{n} \left[p + \frac{B^2}{2\mu_0} \right] - \frac{1}{\mu_0} \mathbf{n} \cdot [\mathbf{BB}] = 0$$
$$[\mathbf{n} \times \mathbf{v} \times \mathbf{B}] = 0$$
$$\mathbf{n} \cdot [\mathbf{B}] = 0$$

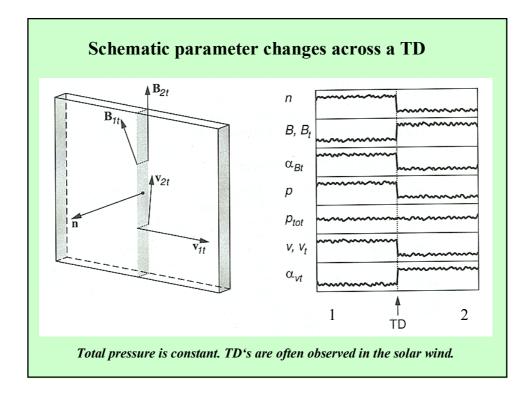
An additional equation expresses conservation of total energy across the D, whereby w denotes the specific internal energy in the plasma, $w=c_vT$.

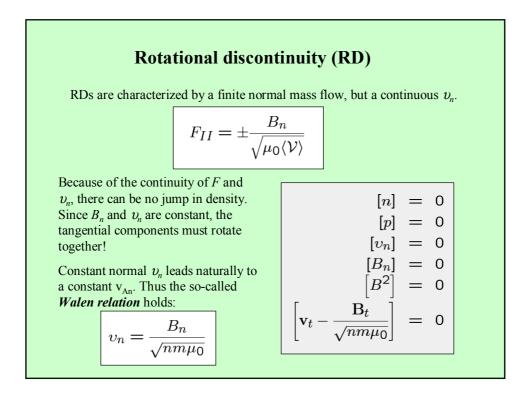
$$\left[nm\mathbf{n}\cdot\mathbf{v}\left\{\frac{v^2}{2}+w+\frac{1}{nm}\left(p+\frac{B^2}{\mu_0}\right)\right\}-\frac{1}{\mu_0}(\mathbf{v}\cdot\mathbf{B})\mathbf{n}\cdot\mathbf{B}\right]=0$$

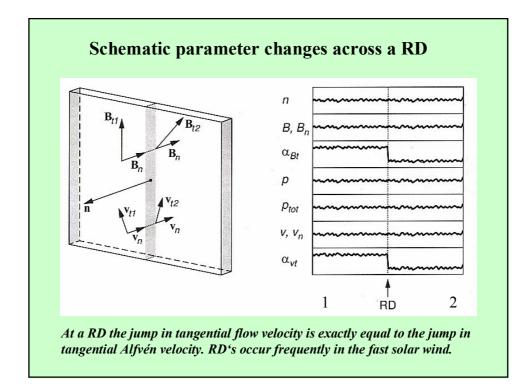


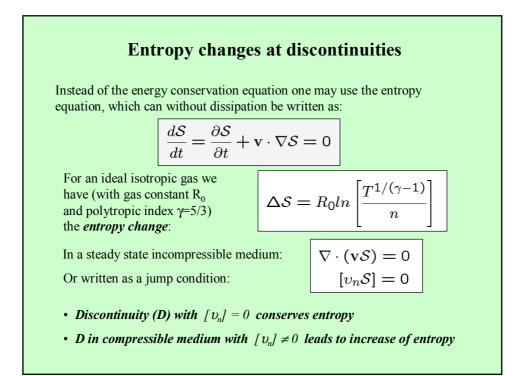












Shocks

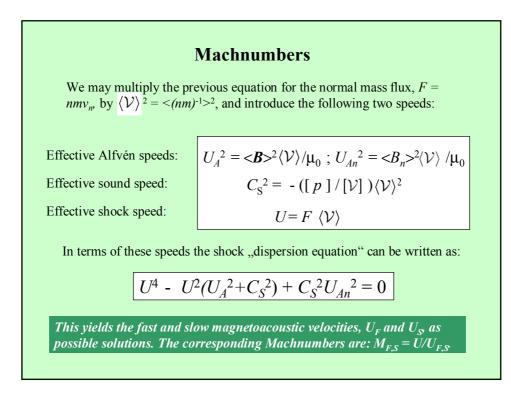
This third type of D is characterised by a *non-vanishing normal mass flux*, $F = nmv_n \neq 0$. F is a solution of the bi-quadratic equation:

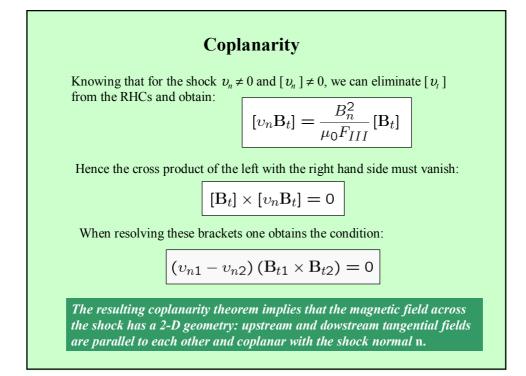
$$F_{III}^{4} + F_{III}^{2} \left(\frac{[p]}{[\mathcal{V}]} - \frac{\langle \mathbf{B} \rangle^{2}}{\mu_{0} \langle \mathcal{V} \rangle} \right) - \frac{B_{n}^{2}}{\mu_{0} \langle \mathcal{V} \rangle} \frac{[p]}{[\mathcal{V}]} = 0$$

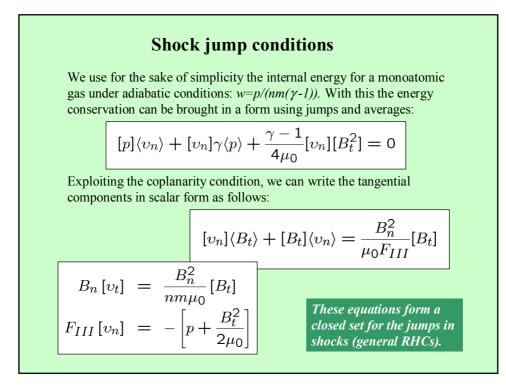
Shock solutions are obtained if the specific volume $V = (nm)^{-1}$ jumps, and since F^2 must be positive, the following inequality holds:

$$\frac{\langle \mathbf{B} \rangle^2}{\mu_0 \langle \mathcal{V} \rangle} > \frac{[p]}{[\mathcal{V}]}$$

This condition is easily satisfied if the right ratio is negative, hence when pressure and specific volume vary oppositely across the D; --> shock







Fast and slow shocks

By eliminating the jump in the normal velocity $[v_n]$ one can obtain a relation between the jumps in the thermal and tangential magnetic pressure (where the quantity *H* is defined below):

$$\left(\frac{\langle \upsilon_n \rangle}{\gamma - 1} - H\right)[p] = \frac{H}{\mu_0 F_{III}} \left[B_t^2\right] \qquad F_{III} \mathcal{H} = \frac{\left[B_t^2\right]}{4\mu_0} + \frac{\gamma \langle p \rangle}{\gamma - 1}$$

Since always [p] > 0 for shocks, because the disturbed plasma is compressed and heated, one can distinguish between two shock types:

Fast shocks with increasing magnetic pressure, $[B_t^2] > 0$, satisfying $\langle v_n \rangle > (\gamma - 1)H$ and $M_F > 1$

Slow shocks with decreasing magnetic pressure, $[B_t^2] < 0$, satisfying $\langle v_n \rangle < (\gamma - 1)H$ and $M_s > 1$

