Plasma waves in the fluid picture I

- Langmuir oscillations and waves
- Ion-acoustic waves
- Debye length
- Ordinary electromagnetic waves
- General wave equation
- General dispersion equation
- Dielectric response function
- Dispersion in a cold electron plasma

Langmuir waves

The plasma oscillations are somewhat artificial since the thermal electrons can move and change their (adiabatic) pressure such that the force balance is:

$$\frac{\partial \delta v_{e,x}}{\partial t} = -\frac{e}{m_e} \delta E - \frac{\gamma_e k_B T_e}{m_e n_e} \frac{\partial \delta n}{\partial x}$$

The wave equation contains now spatial dispersion as well and reads:

$$\frac{\partial^2 \delta n}{\partial t^2} - \frac{\gamma_e k_B T_e}{m_e} \frac{\partial^2 \delta n}{\delta x^2} + \omega_{pe}^2 \delta n = 0$$

A plane wave ansatz yields the dispersion relation with a lower cutoff at the electron plasma frequency. The electron thermal speed is $v_{the} = (k_B T_e/m_e)^{1/2}$.

$$\omega_l^2 = \omega_{pe}^2 + k^2 \gamma_e \upsilon_{the}^2$$

-> Langmuir oscillations become travelling electrostatic waves for $k \neq 0$.

Ion acoustic waves I

At frequencies below the electron oscillations the ions come into play. They contribute their own plasma frequency: $(-72, 2)^{1/2}$

$$\omega_{pi} = \left(\frac{n_i Z^2 e^2}{m_i \epsilon_0}\right)^{1/2}$$

which is for protons (Z=1) by a large factor, $(m_i/m_e)^{1/2} = 43$, smaller than ω_{pe} . When we assume quasineutrality, $n_e \approx n_i$, the electron dynamics reduces to

$$e\delta E = -\gamma_e k_B T_e \frac{\partial \ln n_e}{\partial x}$$

Upon linearization, $n_e = n_0 + \delta n_e$, and with the electric field, $\delta E = -\partial \delta \Phi / \partial x$, the density fluctuation becomes proportional to the potential fluctuation:

$n_e = n_0 \exp\left(\frac{e\delta\phi}{\gamma_e k_B T_e}\right)$	$\frac{\partial \delta n_i}{\partial t} = -n_i \frac{\partial \delta v_{i,x}}{\partial x}$ $\frac{\partial \delta v_{i,x}}{\partial t} = e_{ST}$	
The linearized ion equations of motion:	$\frac{\partial t}{\partial t} = \frac{\partial E}{m_i} \delta E$	

Ion acoustic waves II			
We neglect the ion pressure, assuming $T_i \ll T_e$, and exploit charge-neutrality of the fluctuations, $\delta n_e = \delta n_i = \delta n$, and thus arrive at a single wave equation:			
$\frac{\partial^2 \delta n}{\partial t^2} - \frac{\gamma_e k_B T_e}{m_i} \frac{\partial^2 \delta n}{\partial x^2} = 0$			
Its plane wave solution gives the dispersion of <i>ion acoustic waves</i> .	$\omega_{ia}^2 = \frac{\gamma_e k_B T_e}{m_i} k^2$	Aouenbeu Langmuir Branch	
Upon division by k^2 one finds the phase velocity, the ion acoustic speed, in which ions provide inertia and electrons the restoring force.		ω _{pe}	
$c_{ia} = \left(\frac{\gamma_e k}{r}\right)$	$\left(\frac{r_B T_e}{n_i}\right)^{1/2}$	w _{pi}	
No electrostatic wave ω_{pe} and ω_{pi} in an unm	can propagate between agnetized plasma.	\mathcal{S} Branch Wavenumber $k=2\pi/\lambda_{D}$	

Ordinary electromagnetic waves II

There is a unique relation between conductivity and dielectric constant, which in our case can be written as:

$$\epsilon(\omega) = 1 + \frac{i\sigma_{em}(\omega)}{\epsilon_0\omega} = 1 - \frac{\omega_{pe}^2}{\omega^2}$$

With the help of this expression, we find the dispersion relation (of the ordinary mode):

$$\omega_{om}^2 = \omega_{pe}^2 + c^2 k^2$$

The wave number vanishes at the plasma frequency, which is a *cut-off* for the ordinary mode. Here N^2 becomes formally negative, the wave is *reflected*. See on the right side the ionospheric reflection of radio waves.

General wave equation

Maxwell's equations including *external* sources, j_{ex} and ρ_{ex} , read:

$$\nabla \times \mathbf{B} = \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \left(\mathbf{j} + \mathbf{j}_{ex} \right)$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = \mathbf{0}$$
$$\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \left(\rho + \rho_{px} \right)$$

Taking the time derivative of the first and replacing the magnetic field with the second, yields a general wave equation for the electric field:

$$\nabla^{2}\mathbf{E} - \nabla(\nabla \cdot \mathbf{E}) - \epsilon_{0}\mu_{0}\frac{\partial^{2}\mathbf{E}}{\partial t^{2}} = \mu_{0}\left(\frac{\partial\mathbf{j}}{\partial t} + \frac{\partial\mathbf{j}_{ex}}{\partial t}\right)$$

The conductivity tensor

We have included j_{ex} and ρ_{ex} explicitly, which may be imposed from outside on the plasma, but since the equations are linear in charge density and current can simply be added to the *internal* induced ones. They may be assumed to be given in linear response to the total field by Ohm's law:

$$\mathbf{j} = \int d^3x' \int_{-\infty}^t dt' \sigma \left(\mathbf{x}, \mathbf{x}', t, t' \right) \cdot \mathbf{E}(t', \mathbf{x}')$$

The integration from $-\infty$ to t reflects **causality** (no effect before a cause).

The relation is constitutive for the *material properties* of a plasma and involves all microscopic particle motions. If the medium is *stationary* and *uniform* only the coordinate differences enter, and thus Ohm's law reduces then to:

$$\mathbf{j}(t,\mathbf{x}) = \int d^3x' \int_{-\infty}^t dt' \sigma \left(\mathbf{x} - \mathbf{x}', t - t'\right) \cdot \mathbf{E}$$

Dispersion in MHD-fluid theory

One-fluid magnethydrodynamics is only valid at low frequencies, $\omega \ll (\omega_{gi}, \omega_{pi})$, for long wavelengths, and for small phase speeds, such that $\omega/k \ll c$.

Near $\omega_{gi}, \omega_{pi}, \omega_{ge}$, and ω_{pe} the ion and electron inertia becomes important. At high frequencies new waves appear which require single- or multi-fluid equations for their adequate description, to account for the natural *kinetic scales* (which MHD does not have) in a multicomponent plasma.

To derive the dispersion equation the induced current density must be calculated. The simplest model is the cold electron fluid in a strong field. Each new species introduces new dispersion branches.

Dispersion in a cold electron plasma I

For cold (zero pressure) electrons the magnetic field is not affected by the electron motion and can be included in the gyrofrequency vector $\boldsymbol{\omega}_{ee} = e\boldsymbol{B}_0/m_e$. The equations of motions for the fluctuations read:

$$\begin{aligned} \frac{d\delta v_{\parallel}}{dt} &= \frac{e}{m_e} \delta E_{\parallel} \\ \frac{d\delta \mathbf{v}_{\perp}}{dt} &= \frac{e}{m_e} \delta \mathbf{E}_{\perp} + \omega_{ge} \times \delta \mathbf{v}_{\perp} \end{aligned}$$

Time differentiation yields the *driven oscillator* equation:

$$\frac{\partial^2 \delta \mathbf{v}_{\perp}}{\partial t^2} + \omega_{ge}^2 \delta \mathbf{v}_{\perp} = -\frac{e}{m_e} \left(\frac{\partial \delta \mathbf{E}}{\partial t} + \omega_{ge} \times \delta \mathbf{E}_{\perp} \right)$$

Assuming a cold plasma means all electrons have the same speed, and thus the current density is simply:

$$\delta \mathbf{j} = -en_0 \delta \mathbf{v} = \boldsymbol{\sigma} \cdot \delta \mathbf{E}$$

Dispersion in a cold electron plasma II

For vanishing perpendicular electric field, the electrons perform a pure gyromotion. For the inhomogeneous solution part we make the ansatz of a periodic oscillation, $\delta v \approx exp(-i\omega t)$. After some vector algebra (left as an exercise) one obtains the frequency-dependent *conductivity tensor* (parallel component is independent of the field):

$$\sigma(\omega) = \epsilon_0 \omega_{pe}^2 \begin{bmatrix} \frac{i\omega}{\omega^2 - \omega_{ge}^2} & \frac{\omega_{ge}}{\omega^2 - \omega_{ge}^2} & 0\\ -\frac{\omega_{ge}}{\omega^2 - \omega_{ge}^2} & \frac{i\omega}{\omega^2 - \omega_{ge}^2} & 0\\ 0 & 0 & \frac{i}{\omega} \end{bmatrix}$$

From this equation the dielectric tensor follows by definition.

$$\epsilon_{cold}(\omega) = \begin{bmatrix} 1 + \frac{\omega_{pe}^2}{\omega_{ge}^2 - \omega^2} & -\frac{i\omega_{ge}}{\omega} \frac{\omega_{pe}^2}{\omega_{ge}^2 - \omega^2} & 0\\ \frac{i\omega_{ge}}{\omega} \frac{\omega_{pe}^2}{\omega_{ge}^2 - \omega^2} & 1 + \frac{\omega_{pe}^2}{\omega_{ge}^2 - \omega^2} & 0\\ 0 & 0 & 1 - \frac{\omega_{pe}^2}{\omega^2} \end{bmatrix}$$

Dispersion in a cold electron plasma III The cold electron plasma dispersion relation thus reads: $Det \left[\frac{k^2 c^2}{\omega^2} \left(\mathbf{I} - \frac{\mathbf{k} \mathbf{k}}{k^2} \right) - \epsilon_{cold} \right] = 0$ We can write as shorthand for the dielectric tensor elements: $\epsilon = \begin{bmatrix} \epsilon_1 & -i\epsilon_2 & 0\\ i\epsilon_2 & \epsilon_1 & 0\\ 0 & 0 & \epsilon_3 \end{bmatrix}$ $\epsilon_1 = 1 - \frac{\omega_{pe}^2}{\omega^2 - \omega_{ge}^2}$ $\epsilon_2 = -\frac{\omega_{ge}}{\omega} \frac{\omega_{pe}^2}{\omega^2 - \omega_{ge}^2}$ $\epsilon_3 = 1 - \frac{\omega_{pe}^2}{\omega^2}$

Dispersion in a cold electron plasma IV

By using the vectorial refractive index, $\mathbf{N} = \mathbf{k} c/\omega$, with $N^2 = N_{\perp}^2 + N_{\parallel}^2$, and without loss of generality, $k_y = 0$, and \mathbf{k} in the (*x*, *z*) plane, we obtain:

$$Det \begin{bmatrix} N_{\parallel}^2 - \epsilon_1 & i\epsilon_2 & -N_{\parallel}N_{\perp} \\ -i\epsilon_2 & N^2 - \epsilon_1 & 0 \\ -N_{\parallel}N_{\perp} & 0 & N_{\perp}^2 - \epsilon_3 \end{bmatrix} = 0$$

Basic dispersion relation for a zero-temperature charge-compensated electron plasma, which is valid only for: $k \ll 1/r_{ge}$ and $v_{the} \ll \mathcal{O}/k$.

We distinguish between *parallel*, $N_{\perp} = 0$, and *perpendicular*, $N_{\parallel} = 0$, propagation, in which cases the dispersion relation factorises. The electric field has the components: $E_{\parallel} = E_z$ and $\mathbf{E}_{\perp} = E_x \hat{\mathbf{e}}_x + E_y \hat{\mathbf{e}}_y$, which suggests to use instead right-hand (R) and left-hand (L) circularly polarised components:

$$\sqrt{2}\delta E_{R,L} = (\delta E_x \mp i\delta E_y)$$

