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Plasma waves in the fluid picture II

• Parallel electromagnetic waves

• Perpendicular electromagnetic waves

• Whistler mode waves

• Cut-off frequencies

• Resonance (gyro) frequencies

• Ordinary and extra-ordinary waves

• Ion-cyclotron waves, Alfvén waves

• Lower-hybrid and upper-hybrid resonance

Parallel electromagnetic waves I

We use the wave electromagnetic field components:

They describe right-hand (R) and left-hand (L) polarized waves, as can 
be seen when considering the ratio

This shows that the electric vector of the R-wave rotates in the positive while 
that of the L-wave in the negative y direction. The component transformation 
from δEx,y to δER,L does not change the perpendicular electric field vector. 
Using the unitary matrix, U, makes the dielectric tensor diagonal:
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Parallel electromagnetic waves II

The components read:

The dispersion relation for the 
transverse R and L wave reads:

The right-hand circularly polarised wave has the refractive index:

This refractive index diverges for ω -> 0 as well as for ω -> ωge, 
where k diverges.  

Here ωR,res = ωge is the electron-cyclotron resonance frequency for 
the right-hand-polarised (RHP) parallel electromagnetic wave.

Parallel electromagnetic waves III
Resonances indicate a complex interaction of waves with plasma particles. 
Here k -> ∞ means that the wavelength becomes at constant frequency very 
short, and the wave momentum large. This leads to violent effects on a 
particle‘s orbit, while resolving the microscopic scales. During this resonant 
interaction the waves may give or take energy from the particles leading to 
resonant absorption or amplification (growth) of wave energy. 

At low frequencies, ω << ωge , the above dispersion
simplifies to the electron Whistler mode, yielding the 
typical falling tone in a sonogram as shown above.

ω/kc ∼ ω1/2
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Whistlers in the magnetosphere of Uranus and Jupiter

Wideband electric 
field spectra 
obtained by Voyager
at Uranus on January
24, 1986.

Wave measurements 
made by Voyager I 
near the moon Io at a 
distance of 5.8 RJ
from Jupiter.

Whistlers

fc

Whistler mode waves at an interplanetary shock

Gurnett et al., JGR 84, 541, 1979 ωw = ωge(kc/ωpe)2
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Cut-off frequencies

Setting the refractive index N for R-waves equal to zero, which means 
k = 0 at a finite ω, leads to a second-order equation with the roots:

The left-hand circularly polarised wave has a refractive index given by:

This refractive index does not diverge for ω -> ωge and shows no 
cyclotron resonance. Moreover, since N 2 < 1 one has ω /k > c.  
The LHP waves have a low-frequency cut-off at

Refractive index for parallel R- and L-waves

There is no wave propagation for N 2 < 0, regions which are 
called stop bands or domains where the waves are evanescent.
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Dispersion branches for parallel R- and L-waves

The dispersion branches are for a dense (left) and dilute (right) plasma. Note 
the tangents to all curves, indicating that the group velocity is always smaller 
than c. Note also that the R- and L-waves can not penetrate below their cut-
off  frequencies. The R-mode branches are separated by stop bands.

Perpendicular electromagnetic waves I

The other limiting case is purely perpendicular propagation, which  
means, k =  k⊥. In a uniform plasma we may chose k to be in the x-
direction. The cold plasma dispersion relation reduces to:

Apparently, δE|| decouples from, to δE⊥, and the third tensor element 
yields the dispersion of the ordinary mode, which is denoted as O-mode. 
It is transverse, is cut off at the local plasma frequency and obeys:

The remaining dispersion 
relation is obtained by solving 
the two-dimensional 
determinant, which gives:
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Perpendicular electromagnetic waves II

When inserting the tensor elements one obtains after some algebra
(exercise!)  the wave vector as a function of frequency in  convenient form:

Apparently, δEx is now coupled with δEy, and this mode thus mixes
longitudinal and transverse components. Therefore it is called the 
extraordinary mode, which is denoted as X-mode. It is resonant at the 
upper-hybrid frequency:

The lower-frequency branch of the X-mode goes in resonance at this
upper-hybrid frequency, and from there on has a stop-band up to ωR,co. 

Dispersion for perpendicular O- and X-waves

The dispersion branches are for a dense (left) and dilute (right) plasma. 
Note the tangents to all curves, indicating that the group velocity is always 
smaller than c.  Note that the O- and X-waves can not penetrate below the 
cut-off  frequencies. The X-mode branches are separated by stop bands.
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Two-fluid plasma waves

At low frequencies below and
comparable to ωgi, the ion dynamics
become important. Note that the ion 
contribution can be simply added to 
the electron one in the current and 
charge densities. The cold dielectric 
tensor is getting more involved. The 
elements read now:

For parallel propagation, k⊥ = 0, the dispersion relation is:

For perpendicular propagation, k|| = 0, the dispersion relation can be
written as:

Lower-hybrid resonance

For perpendicular propagation the 
dispersion relation can be written as:

At extremely low frequencies, we have the limits:

These are the dielectric constants for the 
X-mode waves. In that limit the refractive 
index is N⊥= √ε1 , and the Alfvén wave 
dispersion results:

For ε1 -> 0 , the lower-hybrid 
resonance occurs at:

It varies between the ion plasma and 
gyro frequency, and in dense plasma it 
is given by the geometric mean:
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Waves at the lower-
hybrid frequency

Measurements of the 
AMPTE satellite in the 
plasmasphere of the Earth 
near 5 RE. Wave excitation 
by ion currents (modified 
two-stream instability).

Ne ≈ 40 cm-3

Te ≈ several eV

ωlh/2π ≈ 56 Hz

Emax ≈ 0.6 mV/m

Low-frequency dispersion branches

The dispersion branches are for a parallel (left) and perpendicular (right) 
propagation. Note the tangents to all curves, indicating that the group velocity 
is always smaller than c, and giving the Alfvén speed, vA, for small k.  Note 
that the Z-mode waves can not penetrate below the cut-off  frequency ωL,co
and is trapped below ωuh. The X-mode branches are separated by stop bands.
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General oblique propagation
The previous theory can be generalized to oblique propagation and to multi-
ion plasmas. Following Appleton and Hartree, the cold plasma dispersion
relation (with no spatial dispersion) in the magnetoionic theory can be written
as a biquadratic in the refractive index, N 2 = (kc/ω)2. 

The coefficients are given by
the previous dielectric
functions, and there is now
an explicit dependence on the 
wave propagation angle, θ, 
with respect to B.

The coefficient A must vanish at 
the resonance, N -> ∞ , which
yields the angular dependence of 
the resonance frequency on the 
angle θres as:

The coefficient C must vanish
at the cut off, N -> 0 , which
means the cut-offs do not 
depend on θ.

Angular variation of the resonance frequencies 

The two resonance frequencies for a dense (left) and dilute (right) pure electron 
plasma, following from the biquadratic equation:
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Frequency ranges of Z-, L-O- and R-X-mode waves
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Top: Dynamics 
Explorer DE-1 
satellite orbit

Left: Frequency
ranges in the 
auroral region of 
the Earth 
magnetosphere

Whistler and Z-mode waves are trapped.

Electric field fluctuation spectra in the auroral zone 

Measurements by the 
Dynamics Explorer 
DE-1 satellite in the 
Earth‘s high-latitude 
auroral zone.

Maximal field strength 
at a few mV/m. Wave 
excitation by fast 
electrons at relativistic 
cyclotron resonance.

fp = 9 (ne/cm-3)1/2

[kHz]

fg= 28 B/nT [Hz]


