Space plasmas, examples and phenomenology

- Solar interior and atmosphere
- Solar corona and wind
- Heliosphere and energetic particles
- Earth's magnetosphere
- Planetary magnetospheres
- The Earth's bow shock
- Cometary plasmas

Structure of the heliosphere

- Basic plasma motions in the restframe of the Sun
- Principal surfaces (wavy lines indicate disturbances)

Plasma structure of the Earth's magnetosphere

The boundary separating the subsonic (after bow shock) *solar wind* from the cavity generated by the Earth's magnetic field, the *magnetosphere*, is called the *magnetopause*. The solar wind compresses the field on the dayside and stretches it into the *magnetotail* (far beyond lunar orbit) on the nightside. The magnetotail is concentrated in the $10~R_{\rm E}$ thick *plasma sheet*. The *plasmasphere* inside $4~R_{\rm E}$ contains cool but dense plasma of ionospheric origin. The *radiation belt* lies on dipolar field lines between $2~to~6~R_{\rm E}$.

Flux tube (plasma) convection in the magnetosphere

The circulation of magnetic field lines (flux tube) caused by the solar wind is also experienced by the particles gyrating about them.

- -> Tailward plasma flow on open polar field lines and in the magnetospheric lobes.
- -> Earth-ward flow (drift) in the plasma sheet near the equatorial plane.

Electric equipotential contours in equatorial plane

The Earth rotates at a 24 h period. This gives $\Omega_E = 7.27 \ 10^{-5} \ \text{rad/s}$. An inertial observer finds the *corotation electric field*:

$$\mathbf{E}_{cr} = -(\mathbf{\Omega}_E \times \mathbf{r}) \times \mathbf{B}$$

This corotation electric field \mathbf{E}_{cr} is directed radially inward and decreases with the square of the radial distance. The associated potential is about 100 kV.

Planetary parameters and magnetic fields

Parameter	Mercury	Earth	Jupiter	Saturn	Sun
Radius [km] (equator)	2425	6378	71492	60268	696000
Rotation period [h]	58.7 d	23.93	9.93	10.66	25-26 d
Dipole field [G] (equator)	340 nT	0.31	4.28	0.22	3-5
Inclination of equator [Degrees]	3	23.45	3.08	26.73	7.12

Planetary magnetospheres

- Rotation, size, mass,
- Magnetic field (moment) of planet (object) and its inclination
- Inner/outer plasma sources (atmosphere, surface, moons, rings)
- Boundary layer of planet (object) and its conductivity
- Solar wind ram pressure (variable)

Dynamic equilibrium if ram pressure at magnetopause equals field pressure:

$$\rho_{sw}V_{sw}^2 = B^2/2\mu_0 = B_p^2 (R_p/R_m)^6/2\mu_0$$

Stand-off distances: $R_m/R_p = 1.6, 11, 50, 40$ for M, E, J, S.

Electron and ion foreshock geometries

In the de Hoffman-Teller frame one moves parallel to the schock surface with a velocity v_{HT} , which transforms the upstream solar wind inflow velocity into a velocity that is entirely parallel to the upstream magnetic field. This velocity can be expressed by the shock normal unit vector, \mathbf{n} .

$$\mathbf{v}_{sw} = \mathbf{v}_{HT} + \mathbf{v}_{sw\parallel}$$

$$\mathbf{v}_{HT} = \hat{\mathbf{n}} \times (\mathbf{v}_{sw} \times \mathbf{B}_{sw}) / \hat{\mathbf{n}} \cdot \mathbf{B}_{sw}$$

Electron and ion velocity distribution functions

The electron VDF changes from the typical core-halo shape into a broad heated one, which is due to acceleration in the potential of the shock ramp. The ion VDF change from the cold solar wind one by specular reflection and pitch-angle diffusion into a kidney-shaped beam and ring-type VDF in the foreshock region.

Key phenomena in space plasmas

- Dynamic magnetic fields
- Plasma confinement and flows (wind)
- Formation of magnetospheres
- Magnetohydrodynamic waves
- Shocks and turbulence
- Multitude of plasma waves
- Particle heating and acceleration

Complexity in space plasmas

- Highly structured nonuniform magnetic fields
- Multi-component plasmas from various sources
- Velocity distributions far from thermal equlibrium
- Multi-scale spatial and temporal processes
- Sharp but dynamic boundaries and interfaces
- Waves and turbulences everywhere
- Ubiquitous energetic particles