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• The kinetic plasma temperature

Introduction

Kinetic theory describes the plasma statistically, i.e. the 
collective behaviour of the various particles under the 
influence of their self-generated electromagnetic fields.

Collective behaviour and complexity arises from:

• Many particles (species: electrons, protons, heavy ions)

• Long-range self-consistent fields, B(x,t) and E(x,t)

• Fields are averages over the microscopic fields and 
generated by all particles together

• Strong mutual interactions between fields and particles
may lead to nonlinearities
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Phase space

Six-dimensional phase
space with coordinates
axes x and v and 
volume element dxdv

Many particles (i=1, N) having time-
dependent position xi(t) and velocity
vi(t). The particle path at subsequent
times (t1,.., t5) is a curve in phase
space (see illustration right figure).

Phase space density

For each individual particle (index i) we may define the exact
density in phase space through sharp three-dimensional delta
functions ( δ(x) = δ(x) δ(y) δ(z) ) as follows:

The multi-particle density is simply obtained by summation over all particles (of 
all components). The geometrical content is that the phase-space volume occupied
consists of the sum of all individual phase-space volume elements.

Since particles are subject to the action of forces (different 
for different particles), the total phase-space volume will 
deform but remain constant (particle number conservation).
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Equation of motion with electromagnetic forces

Deformation of dxdv due
to microscopic force.

(3-d: dv=d3v=dvxdvydvz)

The instantaneous velocity is
vi=dxi(t)/dt, with the total derivate
with respect to time. Denoting the 
microscopic field by index m, the 
equation of motion reads:

Maxwell equations

Microscopic charge
and current densities

Ampère, Faraday, 
Gauß

Microscopic 
electromagnetic fields
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Klimontovich equation

If no particles are lost from or added to the plasma the 
exact phase space density is conserved. Thus the total 
time derivative 

vanishes, and is in 6-d phase 
space given after the chain rule 
of differentiation as follows:

This still describes the plasma state fully at all times.

Boltzmann equation

We now define an ensemble averaged phase space density, 
the distribution function, through the decomposition:

with vanishing fluctuations:            = 0.                           
Similarly, the microscopic field is decomposed:

Inserting these decompositions into the Klimontovich equation yields after 
ensemble averaging the Boltzmann equation. 
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Models for the collision terms

The second-order term on the right of the Boltzmann equation contains
all correlations between fields and particles, due to collisions and (wave-) 
fluctuation-particle interactions, and is notoriously difficult to evaluate. 

Concerning neutral-ion collisions a simple relaxation approach is sometimes 
applied, with fn being the velocity distribution function (VDF) of the neutrals, 
and νn is their collision frequency:

Collisions (Landau or Fokker-Planck) and wave-particle interactions 
can often be described                                          
as a diffusion process:

Vlasov equation

Since most space plasmas are collisionless, we neglect the 
right-hand side in the Boltzmann equation and thus obtain
the simplest kinetic equation named after Vlasov:

This equation expresses phase space density
conservation (Liouville theorem) visualised
in the left figure. A volume element evolves
under the Lorentz force like in an 
incompressible fluid and remains constant as 
the number of particles contained in it.  

The Vlasov equation is still 
highly nonlinear via closure
with Maxwell‘s equations.
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Maxwellian velocity distribution function

The general equilibrium VDF in a uniform thermal 
plasma is the Maxwellian (Gaussian) distribution.

The average velocity spread (variance) is,  <v> 
= (2kBT/m)1/2, and the mean drift velocity, v0.

Anisotropic model velocity distributions

The most common anisotropic VDF in a uniform thermal plasma is the bi-
Maxwellian distribution. Left figure shows a sketch of it, with T⊥ > T ⎢⎢.
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Loss-cone model distribution function

Here Δ and β are parameters to fit the 
loss cone. Δ=0 gives an empty loss 
cone, and Δ=1 reproduces a simple 
Maxwellian. β allows to change the 
slope of f inside the loss cone.

×

×

Kappa and power-law distribution function

Here κ is a shape parameter. If κ >> 1, the distribution approaches a Maxwellian, κ
= 2 is a Lorentzian, and for small κ > 2  the VDF has a power-law tail in proportion
to (W /W0)-κ, with the average thermal energy W0=kBT (1-3/(2κ)).

Differential particle flux
function, J(W)  ~  v2 f(v), 
with W=mv2/2.

×



8

Measured solar wind proton velocity distributions

• Temperature anisotropies

• Ion beams

• Plasma instabilities

• Interplanetary heating

Plasma measurements made 
at 10 s resolution                  
( > 0.29 AU from the Sun)

Marsch et al., JGR, 87, 52, 1982Helios

Measured solar wind electrons

Sun

• Non-Maxwellian

• Heat flux tail
Pilipp et al., JGR, 92, 1075, 1987

Helios

ne = 3 -10 cm-3
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Velocity moments I

The microsopic distribution depends on v, x, and t. The 
macroscopic physical parameters, like density or 
temperature, depend only on x and t and thus are obtained 
by integration over the entire velocity space as so-called
moments. The i-th moment is the following integral:

Where  vi  = vv...v (i-fold) denotes an i-fold dyadic product, 
i.e. a tensor of rank i. 

Velocity moments II

The number density is defined as 0-th order moment:

The pressure tensor is defined as the fluctuation of the 
velocities of the ensemble from the mean velocity, i.e. 
as the 2-nd order moment:

The bulk flow velocity is defined as 1-st order moment:
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Velocity moments III

The trace-less parts of the pressure tensor P correspond to 
the stresses in the plasma.

More relevant to decribe deviations from thermal equilibrium
is half the trace of Q, the heat flux vector, q, that is defined as:

The heat flux tensor is used to describe the multi-directional
flow of internal energy and defined as 3-rd order moment:

Concept of temperature

The isotropic scalar pressure is defined as a third of the trace of P,  i.e.
p = 1/3 Pii, which leads through the ideal gas law, p = nkBT, to the 
kinetic temperature defined as 2-nd moment:

This temperature can formally be calculated for any VDF and thus is not 
necessarily identical with the thermodynamic temperature. To demonstrate
its meaning, calculate the kinetic temperature for the Maxwellian at rest:

Note that by integration, with the 
volume element d3v = 4πv2dv, 
one finds (exercise!) that


