
1

Boundaries, shocks and discontinuities

• Fluid boundaries

• General jump conditions

• Rankine-Hugoniot conditions

• Set of equations for jumps at a boundary

• Discontinuities

• Shock types

• Bow shock geometry

Fluid boundaries
Equilibria between plasmas with different properties give rise to the evolution 
of boundaries, which take the form of narrow (gyrokinetic scales) layers called 
discontinuities. Conveniently, one starts from ideal plasmas (without 
dissipation) on either side. The transition from one side to the other requires 
some disspation, which is concentrated in the layer itself but vanishes outside. 
MHD (with ideal Ohm‘s law and no space charges) in conservation form reads:
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Definitions, normal and jumps

Changes occur perpendicular to the discontinuity, 
parallel the plasma is uniform. The normal vector, 
n, to the surface S(x) is defined as:

Any closed line integral (along a rectangular box tangential to the surface
and crossing S from medium 1 to 2 and back) of a quantity X reduces to 

Since an integral over a conservation law vanishes, the gradient operation 
can be replaced by

Transform to a frame moving with the discontinuity 
at local speed, U. Because of Galilean invariance, 
the time derivative becomes: 

Discontinuities and shocks

Contact discontinuity (CD)

Index 1 upstream and 2 downstream;

B does not change across the surface 
of the CD, but ρ1 ≠ ρ2 and T1 ≠ T2 .

Continuity of the mass 
flux and magnetic flux:

Bn = B1n = B2n

Gn = ρ1(V1n - U) = ρ2(V2n - U) 

U is the speed of surface in the 
normal direction; B magnetic 
field vector; V the flow velocity. 
Mach number, M = V/C. Here C 
is the wave phase speed.

Shock:                G ≠ 0

Discontinuity:    G = 0
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Rankine-Hugoniot conditions I
In the comoving frame (v' = v - U) the discontinuity (D) is stationary so that the
time derivative can be dropped. We skip the prime and consider the situation in 
a frame where D is at rest.  We assume an isotropic pressure, P=p1. 
Conservation laws transform into the jump conditions across D, reading:

An additional equation expresses conservation of total energy across the 
D, whereby w denotes the specific internal energy in the plasma, w=cvT.

Rankine-Hugoniot conditions II

These equations contain all basic information about any D in ideal MHD.

The normal component of the magnetic field is continuous:

The mass flux across D is a constant:

Using these two relations and splitting B and v into their normal (index n) 
and tangential (index t) components gives three remaining jump conditions:

stress 
balance

tangential 
electric field

pressure 
balance
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Mass-flux classification of D‘s

Introduce the average of X across
a D by the mean value: 

New variables: Specific volume, V = (nm)-1 and constant normal mass flux, 
F = nmυn. After tedious algebra (left as a hard exercise) the determinant for 
the system of RHC can be written as a seventh-order equation in F, reading:

Tangential, 
contact D Rotational D Shocks

Contact and tangential discontinuity

CD and TD are characterized by a zero normal mass flow, and thus υn= 0. 

Bn ≠ 0   ->   Contact D

Bn = 0   ->   Tangential D

Since in a CT the thermal pressure remains constant, any change in density must
be compensated by a change in temperature. However, a temperature jump is
quickly ironed out by electron heat conduction ->  CD do not persist long. 
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Schematic parameter changes across a TD

Total pressure is constant. TD‘s are often observed in the solar wind.

1 2

Rotational discontinuity (RD)

RDs are characterized by a finite normal mass flow, but a continuous υn.

Because of the continuity of F and 
υn, there can be no jump in density. 
Since Bn and υn are constant, the 
tangential components must rotate 
together!  

Constant normal υn leads naturally to 
a constant vAn. Thus the so-called 
Walen relation holds:
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Schematic parameter changes across a RD

At a RD the jump in tangential flow velocity is exactly equal to the jump in 
tangential Alfvén velocity. RD‘s occur frequently in the fast solar wind.

The RD jump conditions imply the Walén relation: 8.42
21

Entropy changes at discontinuities

Instead of the energy conservation equation one may use the entropy 
equation, which can without dissipation be written as: 

For an ideal isotropic gas we 
have (with gas constant R0
and polytropic index γ=5/3) 
the entropy change:

In a steady state incompressible medium:

Or written as a jump condition:

• Discontinuity (D) with [υn] = 0 conserves entropy

• D in compressible medium with [υn] ≠ 0 leads to increase of entropy
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Shocks

This third type of D is characterised by a non-vanishing normal mass flux, 
F = nmυn ≠ 0.  F is a solution of the bi-quadratic equation:

Shock solutions are obtained if the specific volume V = (nm)-1 jumps, and 
since F2 must be positive, the following inequality holds: 

This condition is easily satisfied if the right ratio is negative, hence when
pressure and specific volume vary oppositely across the D;   -->  shock 

Machnumbers

CS
2 =  - ([ p ] /       )      2

We may multiply the previous equation for the normal mass flux, F = 
nmvn, by 2 = <(nm)-1>2, and introduce the following two speeds:

Effective Alfvén speeds: 

Effective sound speed: 

In terms of these speeds the shock „dispersion equation“ can be written as:

Effective shock speed: U = F

U4  - U2(UA
2+CS

2) + CS
2UAn

2 = 0

This yields the fast and slow magnetoacoustic velocities, UF and US, as 
possible solutions. The corresponding Machnumbers are: MF,S = U/UF,S.

UA
2  = <B>2 /μ0  ; UAn

2  = <Bn>2          /μ0
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Coplanarity

Knowing that for the shock υn ≠ 0 and [υn ] ≠ 0, we can eliminate [υt ] 
from the RHCs and obtain:

Hence the cross product of the left with the right hand side must vanish:

When resolving these brackets one obtains the condition:

The resulting coplanarity theorem implies that the magnetic field across
the shock has a 2-D geometry: upstream and dowstream tangential fields 
are parallel to each other and coplanar with the shock normal n.

Shock jump conditions

We use for the sake of simplicity the internal energy for a monoatomic 
gas under adiabatic conditions: w=p/(nm(γ -1)). With this the energy 
conservation can be brought in a form using jumps and averages:

Exploiting the coplanarity condition, we can write the tangential 
components in scalar form as follows:

These equations form a 
closed set for the jumps in 
shocks (general RHCs).
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Fast and slow shocks

By eliminating the jump in the normal velocity [vn] one can obtain 
a relation between the jumps in the thermal and tangential 
magnetic pressure (where the quantity H is defined below):

Since always [p] > 0  for shocks, because the disturbed plasma is 
compressed and heated,  one can distinguish between two shock types:

Fast shocks with increasing magnetic pressure, [ Bt
2] > 0 ,                   

satisfying <vn> >  (γ -1)H and  MF  > 1

Slow shocks with decreasing magnetic pressure,  [ Bt
2] < 0 ,                   

satisfying <vn> <  (γ -1)H    and  MS  > 1

Schematic parameter changes across a fast shock

In a fast shock the magnetic field increases. It is tilted toward the surface and 
bends away from the normal. Fast shocks may evolve from fast mode waves.

21
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Schematic parameter changes across a slow shock

In a slow shock the magnetic field decreases. It is tilted away from the surface
and bends toward the normal. Slow shocks may evolve from slow mode waves.

21

Four possible geometries of shock normals
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The most famous and mostly researched shock is the bow shock standing
in front of the Earth as result of the interaction of the magnetosphere with
the supersonic solar wind, with a high Machnumber, MF ≈ 8. Solar wind 
density and field jump by about a factor of 4 into the magnetosheath.

Bow shock


