Space Plasma Physics
Thomas Wiegelmann, 2012

1. Basic Plasma Physics concepts
2. Overview about solar system plasmas

Plasma Models

3. Single particle motion, Test particle model

4. Statistic description of plasma, BBGKY-
Hierarchy and kinetic equations

5. Fluid models, Magneto-Hydro-Dynamics
6. Magneto-Hydro-Statics
7. Stationary MHD and Sequences of Equilibria

Sequences of Equilibria

So far we studied static and stationary states as
independent equilibria, which do not depend on time.

Equilibria do, however, often depend on boundary
conditions (like magnetic field in solar photosphere
for coronal modelling or solar wind pressure for
magnetotail models) which vary slowly in time.

=> We get a time-sequence of equilibria.

We do not, however, understand how the transition
between different equilibria takes place physically.
For some cases (e.g. magnetospheric convection) we
know that the plasma is ideal (no topology changes)
in quiet times.
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Stationary MHD and
Sequences of Equilibria

Slowly varying sequences of equilibria.

Topology conserving sequences of equilibria
and formation of thin current sheets.

Comparison: Stationary incompressible
Hydro-dynamics and Magneto-hydro-statics

Transformation from static MHD-equilibria
to equilibria with plasma flow.

Sequences of Equilibria

In the equilibrium theory developed so far, the
different equilibria are not constraint.

=> For different boundary conditions we get different
magneto-static equilibria, which might have a
different magnetic topology.

Such a sequence of equilibria CANNOT be considered
as a physical meaningful slow evolution within

ideal MHD.

Can we constrain a sequence of static equilibriain a
way that the ideal MHD-equation are obeyed?

Sequences of Equilibria

* For special configurations (liked magnetospheric

convection) it is possible to reformulate the

ideal MHD equations in order to compute

sequence of static equilibria under constrains

of field line conservation.

A principle way is:

-compute an initial static equilibria

-solve the time dependent ideal MHD-equations
numerically and change the boundary conditions
slowly in time.

-If a nearby equilibrium exists, the MHD-code
will very likely find it.

* The code will also find out if the configuration

becomes unstable. One has to take care about
algorithm to avoid artificial numerical diffussion.



Stationary incompressible MHD
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SIHD
p(V-V)V = -VP
V-v=10
vector identity:
1 B
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SIHD and MHS have same mathematical
structure (Gebhardt&Kiessling 92):
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Stationary incompressible MHD
* Mathematical structure of hydro-dynamics and
magneto-static is similar.

* We assume, that we found solution of a magneto-
static equilibrium (Grad-Shafranov Eq. in 2D = >
Flux-function or Euler-potentials in 3D).

* We use the similar mathematical structure to
find transformation equations (different flux-
function) to solve stationary MHD.

* We introduce the Alfven velocity U4 = B/V Ho P
and the Alfven Machnumber My = f'/l‘_4

* We limit to sub-Alfvenic flows
here. Pure super-Alfvenic flows can be studied
similar. Somewhat tricky are trans-Alfvenic flows.



Stationary incompressible MHD

* With this approach we can eliminate the plasma
velocity in the SMHD equations and get:

B. 61“ — () => Alfven Machnumber is constant on field lines
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* Obviously the equations reduce to magnetostatics
for M_A=0. The second equation changes it’s sign
from sub- to super-Alfvenic flows.

Grad-Shafranov-Equation with flow

* The stationary incompressible MHD-equations
reduce to a Grad-Shafranov equation

1 AA oll
m dA
* Any solution we found for the static case can be
used to find a solution for equilibria with flow by:

/’ dA
a=+ | ———

* Transformation can become complicated, however.

Jovian Magnetosphere

* Jupiter: fast rotation 10 h, mass-loading 1000 kg/s
* Dynamics driven largely by internal sources.

Planetary rotation coupled with internal plasma
loading from the moon lo may lead to additional
currents, departure from equilibrium, magnetospheric
instabilities and substorm-like processes.

Stationary states of a fast rotating magnetosphere
cannot be modeled with a magneto-static model.

We have to incorporate the rotation
=> Equilibria with centrifugal force.
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Stationary incompressible MHD in 2D
Similar as in the magneto-static case we represent
the magnetic field with a flux-function: b ( T .,)

Flux functions are not unique and we can transform
to another flux function 4 (7 )

The Alfven mach number is constént on field lines:
My = Mg(a) = My(A)

We can now eliminate terms containing the
Alfven Mach number by choosing:

(1—M3%) 0—“2=1
T AN\o4) T

Planetary magnetospheres
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Source: Neukirch 1998

We use a cylinder geometry and derive the
corresponding Grad-Shafranov Equation.



Grad-Shafranov Eq. in cylinder-geometry

This section is based on a lecture by Neukirch 1998
* Rotational invariance without additional forces

B VA x Vo+ Byey,

1
= —VAxey+ Byey

Here A is not the ¢-component of the vector potential, but A/w is !

B-Vp=0

plwm, 2) = F(A(w, 2))

Looking at the g-component of this equation we see that
170 (L B oA 1 B.V (=R,
om0 0T T o = s
As the rotational gradient vanishes = 0

It follows that
by(w, 2) = wBy(w, z) = G(A(w, 2)).

This allows us to write the rest of the equations as
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¢ For non-vanishing gradient of A we get the
Grad-Shafranov-Eq. in cylinder geometry:
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so that the ideal Ohm’s law
E+vxB=0

acquires the form
-Vo +QVA=0.

* The current density becomes:
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Including the centrifugal force
* We now include a strictly rotational plasma flow
v = wlle,

a) Continuity equation

. 1 d
Velpv) = ——(wpfl) =0
w dor
because of axisymmetry.

b) Ohm's law and Faraday’s law

From Faraday's law
V=xE=0

we conclude that
E=-Va.

Taking the curl of this equation results in
VQxVA=0
leading to the conclusion that

Q=H(A)
Ferraro’s law of isorotation: The angular
velocity is constant on magnetic field lines

Since € is a function of A, we also get
Vo +Q(A)VA=0

and find that the electric potential
is a function of A as well.
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We write the velocity more convenient Momentum Balance Equation
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Grad-Shafranov-eq. for rotating systems Grad-Shafranov-eq. for rotating systems

With the same arguments as before we conclude that
* Ferraro's law of isorotation restricts the angular velocity.
p=F(Amn)
Imagine a rigidly rotating magnetised body, e.g. a star or a planet,

and the partial differential equations to solve are which has a surface into which the field lines are frozen, ic. € is fixed at

1 ap 1 db, dQ the surface of the star. Then by Ferraro’s law we have (A) = Q* for every
. v (ﬁv_{) = (7) + ),’N N !, field line touching the surface in at least one point. This can cause problems
w= A d. ‘l dA for field lines extending very far out because v, Q* will become very
ap large. Of course this means that the centrifugal force becomes large and the
(_) = p plasma will be accelerated ontwards: a plasma flow along the the field lines
n starts leading e.g. to a stellar wind and the field lines become open.

Again we have to provide information on p in the same way as before
and to integrate the second equation first. When substituting p into
the first equation one has to keep 1 constant althongh € can depend
on A!

Sequences of equilibria Stationary MHD

* One should not naively consider every sequences of
static equilibria as a physical reasonable temporal
evolution.

* Magnetostatics and stationary Hydrodynamics
are mathematical similar, also the terms have

’ ’ . different physical meaning.
* Magnetostatic means, that velocity and time- Iy J

dependence are small (and can be neglected)
in the momentum transport.

* We can use this property to transform solutions
of MHS to stationary MHD for incompressible

field line parallel plasma flows.
* We still have to solve continuity equation, ideal P P

Ohm'’s law and an equation of state to obtain
a physical meaningful time-sequence of equilibria.

Rotating systems are restricted by Ferraros law
of isoration and we have to solve two coupled

differential equations.
* This can become involved. g
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How to proceed?

Study time dependent system:

Plasma Waves

Instabilities

Discontinuities

Waves and instabilities occur in MHD as

well as in a kinetic model.

In discontinuities the Fluid approach often

breaks down and one has to apply kinetic models.



