

Temperature Correction Schemes

Stellar Atmospheres: Temperature Correction Schemes

LTE

 $\begin{array}{ll} \text{Strict LTE} & S_{\nu}(\tau) = B_{\nu}(T(\tau)) \\ \text{Scattering} & S_{\nu}(\tau) = (1 - \beta_e) B_{\nu}(T(\tau)) + \beta_e J_{\nu}(\tau) \\ \end{array}$

Simple correction from radiative equilibrium: $\int_{0}^{\infty} r(\tau, y) \left(I_{1}(\tau, y) - P_{2}(T(\tau, y)) \right) dy \neq 0$

$$\int_{v=0}^{\infty} \kappa(\tau, v) \left(J_{v}(\tau, v) - B_{v}(T(\tau), v) \right) dv \neq 0$$

$$\xrightarrow{\Delta T} \int_{v=0}^{\infty} \kappa(\tau, v) \left(J_{v}(\tau, v) - B_{v}\left[T(\tau) + \Delta T(\tau)\right] \right) dv = 0$$

$$\Rightarrow \int_{v=0}^{\infty} \kappa \left(J_{v} - B_{v} - \Delta T \frac{\partial B_{v}}{\partial T} \Big|_{T=T(\tau)} \right) dv = 0$$

$$\Rightarrow \Delta T = \int_{v=0}^{\infty} \kappa \left(J_{v} - B_{v} \right) dv / \int_{v=0}^{\infty} \kappa \frac{\partial B_{v}}{\partial T} \Big|_{T=T(\tau)} dv$$

5

Stellar Atmospheres: Temperature Correction Schemes
LTE
Problem:

$$\Delta T = \int_{v=0}^{\infty} \kappa (J_v - B_v) dv / \int_{v=0}^{\infty} \kappa \frac{\partial B_v}{\partial T} \Big|_{T=T(\tau)} dv$$

$$J_v \longrightarrow B_v \quad \text{independent of the temperature} \Rightarrow \Delta T \rightarrow 0$$
Gray opacity (κ independent of frequency):

$$\int_{v=0}^{\infty} \kappa(v) (J_v - B_v) dv \rightarrow \kappa (J - B)$$

$$\rightarrow \kappa (J - B - \Delta B) = 0$$

$$\rightarrow \kappa (J - B) = \kappa \Delta B$$

$$-\frac{\partial H}{\partial t} = \kappa \Delta B$$
deviation from constant flux provides temperature correction

Stellar Atmospheres: Temperature Correction Schemes Unsöld (1955) for gray LTE atmospheres, generalized by Lucy (1964) for non-gray LTE atmospheres 0-th moment: $\frac{dH_v}{dt} = \kappa_v (J_v - B_v)$ $\int \cdots dv \rightarrow \frac{dH}{d\tau} = \frac{\kappa_J}{\kappa_B} J - B$, $\kappa_B B = \int_{v=0}^{\infty} \kappa_v B_v dv$, $\kappa_J J = \int_{v=0}^{\infty} \kappa_v J_v dv$, $d\tau = \kappa_B dt$ Ist moment: $\frac{dK_v}{d\tau} = \kappa_v H_v$ $\int \cdots dv \rightarrow \frac{dK}{d\tau} = \frac{\kappa_H}{\kappa_B} H$, $\kappa_H H = \int_{v=0}^{\infty} \kappa_v H_v dv$ now new quantities J', H', K' fulfilling radiative equilibrium (local) and flux conservation (non local) radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_H}{\kappa_B} H' = \frac{\kappa_H}{\kappa_B} \frac{\sigma}{4\pi} T_{eff}^4$, T_{eff}^4		
Unsöld-Lucy correction Unsöld (1955) for gray LTE atmospheres, generalized by Lucy (1964) for non-gray LTE atmospheres 0-th moment: $\frac{dH_v}{dt} = \kappa_v (J_v - B_v)$ $\int \cdots dv \rightarrow \frac{dH}{d\tau} = \frac{\kappa_J}{\kappa_B} J - B$, $\kappa_B B = \int_{v=0}^{\infty} \kappa_v B_v dv$, $\kappa_J J = \int_{v=0}^{\infty} \kappa_v J_v dv$, $d\tau = \kappa_B dt$ Ist moment: $\frac{dK_v}{d\tau} = \kappa_v H_v$ $\int \cdots dv \rightarrow \frac{dK}{d\tau} = \frac{\kappa_H}{\kappa_B} H$, $\kappa_H H = \int_{v=0}^{\infty} \kappa_v H_v dv$ now new quantities J', H', K' fulfilling radiative equilibrium (local) and flux conservation (non local) radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_J}{\kappa_B} J' - B' = 0$ flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_H}{\kappa_B} H' = \frac{\kappa_H}{\kappa_B} \frac{\sigma}{4\pi} T_{eff}^4$	Stellar Atmospheres: Temperature Correction Schemes	
Unsöld (1955) for gray LTE atmospheres, generalized by Lucy (1964) for non-gray LTE atmospheres 0-th moment: $\frac{dH_v}{dt} = \kappa_v (J_v - B_v)$ $\int \cdots dv \rightarrow \frac{dH}{d\tau} = \frac{\kappa_J}{\kappa_B} J - B$, $\kappa_B B = \int_{v=0}^{\infty} \kappa_v B_v dv$, $\kappa_J J = \int_{v=0}^{\infty} \kappa_v J_v dv$, $d\tau = \kappa_B dt$ Ist moment: $\frac{dK_v}{dt} = \kappa_v H_v$ $\int \cdots dv \rightarrow \frac{dK}{d\tau} = \frac{\kappa_H}{\kappa_B} H$, $\kappa_H H = \int_{v=0}^{\infty} \kappa_v H_v dv$ now new quantities J', H', K' fulfilling radiative equilibrium (local) and flux conservation (non local) radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_H}{\kappa_B} H' = \frac{\kappa_H}{\kappa_B} \frac{\sigma}{4\pi} T_{eff}^4$	Unsöld-Lucy correction	
0-th moment: $\frac{dH_{v}}{dt} = \kappa_{v} \left(J_{v} - B_{v} \right)$ $\int \cdots dv \rightarrow \frac{dH}{d\tau} = \frac{\kappa_{J}}{\kappa_{B}} J - B , \kappa_{B}B = \int_{v=0}^{\infty} \kappa_{v}B_{v}dv , \kappa_{J}J = \int_{v=0}^{\infty} \kappa_{v}J_{v}dv , d\tau = \kappa_{B}dt$ 1st moment: $\frac{dK_{v}}{d\tau} = \kappa_{v}H_{v}$ $\int \cdots dv \rightarrow \frac{dK}{d\tau} = \frac{\kappa_{H}}{\kappa_{B}} H , \kappa_{H}H = \int_{v=0}^{\infty} \kappa_{v}H_{v}dv$ now new quantities J', H', K' fulfilling radiative equilibrium (local) and flux conservation (non local) radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_{J}}{\kappa_{B}} J' - B' = 0$ flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_{H}}{\kappa_{B}} H' = \frac{\kappa_{H}}{\kappa_{B}} \frac{\sigma}{\tau} T_{\text{eff}}^{4}$ 7	Unsöld (1955) for gray LTE atmospheres, generalized by Lucy (1964) for non-gray LTE atmospheres	
$\int \cdots dv \rightarrow \frac{dH}{d\tau} = \frac{\kappa_J}{\kappa_B} J - B , \kappa_B B = \int_{v=0}^{\infty} \kappa_v B_v dv , \kappa_J J = \int_{v=0}^{\infty} \kappa_v J_v dv , d\tau = \kappa_B dt$ Ist moment: $\frac{dK_v}{d\tau} = \kappa_v H_v$ $\int \cdots dv \rightarrow \frac{dK}{d\tau} = \frac{\kappa_H}{\kappa_B} H , \kappa_H H = \int_{v=0}^{\infty} \kappa_v H_v dv$ now new quantities J', H', K' fulfilling radiative equilibrium (local) and flux conservation (non local) radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_J}{\kappa_B} J' - B' = 0$ flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_H}{\kappa_B} H' = \frac{\kappa_H}{\kappa_B} \frac{\sigma}{4\pi} T_{\text{eff}}^4$ 7	0-th moment: $\frac{dH_v}{dt} = \kappa_v \left(J_v - B_v \right)$	
Ist moment: $\frac{dK_v}{dt} = \kappa_v H_v$ $\int \cdots dv \rightarrow \frac{dK}{d\tau} = \frac{\kappa_H}{\kappa_B} H$, $\kappa_H H = \int_{v=0}^{\infty} \kappa_v H_v dv$ now new quantities J', H', K' fulfilling radiative equilibrium (local) and flux conservation (non local) radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_J}{\kappa_B} J' - B' = 0$ flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_H}{\kappa_B} H' = \frac{\kappa_H}{\kappa_B} \frac{\sigma}{4\pi} T_{\text{eff}}^4$ 7	$\int \cdots dv \rightarrow \frac{dH}{d\tau} = \frac{\kappa_J}{\kappa_B} J - B , \kappa_B B = \int_{v=0}^{\infty} \kappa_v B_v dv , \kappa_J J = \int_{v=0}^{\infty} \kappa_v J_v dv , d\tau = \kappa_B dt$	
$\int \cdots dv \rightarrow \frac{dK}{d\tau} = \frac{\kappa_{H}}{\kappa_{B}} H , \kappa_{H} H = \int_{v=0}^{\infty} \kappa_{v} H_{v} dv$ now new quantities J', H', K' fulfilling radiative equilibrium (local) and flux conservation (non local) radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_{J}}{\kappa_{B}} J' - B' = 0$ flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_{H}}{\kappa_{B}} H' = \frac{\kappa_{H}}{\kappa_{B}} \frac{\sigma}{4\pi} T_{\text{eff}}^{4}$ 7	1st moment: $\frac{dK_v}{dt} = \kappa_v H_v$	
now new quantities J', H', K' fulfilling radiative equilibrium (local) and flux conservation (non local) radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_J}{\kappa_B} J' - B' = 0$ flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_H}{\kappa_B} H' = \frac{\kappa_H}{\kappa_B} \frac{\sigma}{4\pi} T_{\text{eff}}^4$ 7	$\int \cdots dv \to \frac{dK}{d\tau} = \frac{\kappa_H}{\kappa_B} H , \kappa_H H = \int_{v=0}^{\infty} \kappa_v H_v dv$	
flux conservation (non local) radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_J}{\kappa_B} J' - B' = 0$ flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_H}{\kappa_B} H' = \frac{\kappa_H}{\kappa_B} \frac{\sigma}{4\pi} T_{\text{eff}}^4$ 7	now new quantities J', H', K' fulfilling radiative equilibrium (local) and	
radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_J}{\kappa_B} J' - B' = 0$ flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_H}{\kappa_B} H' = \frac{\kappa_H}{\kappa_B} \frac{\sigma}{4\pi} T_{\text{eff}}^4$ 7	flux conservation (non local)	
flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_H}{\kappa_R} H' = \frac{\kappa_H}{\kappa_R} \frac{\sigma}{4\pi} T_{\text{eff}}^4$ 7	radiative equilibrium: $\frac{dH'}{d\tau} = \frac{\kappa_J}{\kappa_B} J' - B' = 0$	
	flux conservation: $\frac{dK'}{d\tau} = \frac{\kappa_H}{\kappa_B} H' = \frac{\kappa_H}{\kappa_B} \frac{\sigma}{4\pi} T_{\text{eff}}^4$	7

Stellar Atmospheres: Temperature Correction Schemes

Avrett-Krook method

In case that flux conservation and radiative equilibrium is not fulfilled, Unsöld-Lucy can only change the temperature

Change of other quantities, e.g. opacity, is not accounted for \rightarrow Avrett & Krook (1963)

strict LTE assumed, generalization straightforward Current quantities:

$$\mu \frac{dI_v^0}{d\tau^0} = \frac{\kappa_v^0}{\frac{\kappa_v^0}{z_v^0}} \left(I_v^0 - B_v^0(\tau^0(\tau^0)) \right) \quad \text{with some kind of mean opacity } \kappa^0$$

Does not fulfill flux conservation and radiative equilibrium New quantities:

15

$$\mu \frac{dI_{\nu}}{d\tau} = \frac{\kappa_{\nu}}{\kappa_{\nu}} (I_{\nu} - B_{\nu}(T(\tau))) \quad \text{with mean opacity } \kappa$$

Stellar Atmospheres: Temperature Correction Schemes Avrett-Krook method Linear Taylor expansion of the new quantities from old ones: $\tau = \tau^{0} + \tau^{1} \rightarrow \frac{d\tau}{d\tau^{0}} = 1 + \frac{d\tau^{1}}{d\tau^{0}} \quad T = T^{0} + T^{1} \quad I_{v} = I_{v}^{0} + I_{v}^{1} \quad H = \int (H_{v}^{0} + H_{v}^{1}) dv = \sigma/4\pi T_{eff}^{4}$ $\chi_{v} = \chi_{v}^{0} + \chi_{v}^{1} = \chi_{v}^{0} + \tau^{1} \frac{d\chi_{v}}{d\tau} \Big|_{0} \quad B_{v} = B_{v}^{0} + B_{v}^{1} = B_{v}^{0} + T^{1} \frac{dB_{v}}{dT} \Big|_{0}$ Radiative transfer equation: $\mu \frac{dI_{v}}{d\tau} = \chi_{v} \left(I_{v} - B_{v}(T(\tau))\right)$ $\mu \frac{dI_{v}^{0}}{d\tau^{0}} + \mu \frac{dI_{v}^{1}}{d\tau^{0}} = \frac{d\tau}{d\tau^{0}} \left(\chi_{v}^{0} + \chi_{v}^{1}\right) \left(I_{v}^{0} + I_{v}^{1} - B_{v}^{0} - B_{v}^{1}\right)$ $\chi_{v}^{0} \left(I_{v}^{0} - B_{v}^{0}\right) + \mu \frac{dI_{v}^{1}}{d\tau^{0}} = \left(1 + \frac{d\tau^{1}}{d\tau^{0}}\right) \left(\chi_{v}^{0} + \chi_{v}^{1}\right) \left(I_{v}^{0} + I_{v}^{1} - B_{v}^{0} - B_{v}^{1}\right)$ $\mu \frac{dI_{v}^{1}}{d\tau^{0}} = \chi_{v}^{0} \left(I_{v}^{1} - B_{v}^{1}\right) + \left(\chi_{v}^{1} + \chi_{v}^{0} \frac{d\tau^{1}}{d\tau^{0}}\right) \left(I_{v}^{0} - B_{v}^{0} - B_{v}^{1}\right)$ = 16

Stellar Atmospheres: Temperature Correction Schemes
Avrett-Krook method
O-th moment:

$$\mu \frac{dI_{v}^{1}}{d\tau^{0}} = \chi_{v}^{0} (I_{v}^{1} - B_{v}^{1}) + (\chi_{v}^{1} + \chi_{v}^{0} \frac{d\tau^{1}}{d\tau^{0}}) (I_{v}^{0} - B_{v}^{0}) \quad \int \cdots d\mu$$

$$\rightarrow \frac{dH_{v}^{1}}{d\tau^{0}} = \chi_{v}^{0} (J_{v}^{1} - B_{v}^{1}) + (\chi_{v}^{1} + \chi_{v}^{0} \frac{d\tau^{1}}{d\tau^{0}}) (J_{v}^{0} - B_{v}^{0})$$

$$\rightarrow \frac{dH_{v}^{1}}{d\tau^{0}} = \chi_{v}^{0} (J_{v}^{1} - T^{1} \frac{dB_{v}}{dT^{0}}) + (\tau^{1} \frac{d\chi_{v}}{d\tau^{0}} + \chi_{v}^{0} \frac{d\tau^{1}}{d\tau^{0}}) (J_{v}^{0} - B_{v}^{0}) \quad \int \cdots dv$$

$$\rightarrow \frac{dH^{1}}{d\tau^{0}} = -\frac{dH^{0}}{d\tau^{0}} = \int_{0}^{\infty} \chi_{v}^{0} J_{v}^{1} dv - T^{1} \int_{0}^{\infty} \chi_{v}^{0} \frac{dB_{v}}{dT^{0}} dv + \tau^{1} \int_{0}^{\infty} \frac{d\chi_{v}}{d\tau^{0}} (J_{v}^{0} - B_{v}^{0}) dv + \frac{d\tau^{1}}{d\tau^{0}} \frac{dH^{0}}{d\tau^{0}}$$

$$\Rightarrow T^{1} = 1 / \int_{0}^{\infty} \chi_{v}^{0} \frac{dB_{v}}{dT^{0}} dv$$

$$\left[\tau^{1} \int_{0}^{\infty} \frac{d\chi_{v}}{d\tau^{0}} (J_{v}^{0} - B_{v}^{0}) dv + (1 + \frac{d\tau^{1}}{d\tau^{0}}) \frac{dH^{0}}{d\tau^{0}} + (\frac{\sigma T_{eff}^{4}}{4\pi H^{0}(0)} - 1) \int_{0}^{\infty} \chi_{v}^{0} \frac{H_{v}^{0}(0)}{f_{v}h_{v}} dv \right]$$
19

Stellar Atmospheres: Temperature Correction Schemes
Radiative equilibrium and Complete Linearization
(LTE)
Simultaneous solution of RT and RE radiation transfer:

$$J_{v}(v, \tau) - \frac{d^{2}J_{v}(v, \tau)}{d\tau(v)^{2}} - B_{v}(v, T(\tau)) = 0$$

$$\rightarrow f_{ik}(\vec{J}_{k}, \vec{T}) = 0 \quad \vec{J}_{k} = (J_{1,k}, \cdots, J_{i,k}, \cdots, J_{ND,k}) \quad \vec{T} = (T_{1}, \cdots, T_{i}, \cdots, T_{ND})$$

$$\vec{J}_{k}^{0}, \vec{T}^{0} \quad f_{ik}(\vec{J}_{k}^{0}, \vec{T}^{0}) \neq 0 \Rightarrow \text{ correction } \delta\vec{J}_{k}, \delta\vec{T} \rightarrow f_{ik}(\vec{J}_{k}^{0} + \delta\vec{J}_{k}, \vec{T}^{0} + \delta\vec{T}) = 0$$
Taylor expansion: $f_{ik}(\vec{J}_{k}^{0}, \vec{T}^{0}) + \frac{\partial f_{ik}}{\partial J_{i-1k}} \delta J_{i-1k} + \frac{\partial f_{ik}}{\partial J_{ik}} \delta J_{ik} + \frac{\partial f_{ik}}{\partial J_{i+1k}} \delta J_{i+1k} + \frac{\partial f_{ik}}{\partial T_{i}} \delta T_{i}$

$$\rightarrow T_{k}\delta\vec{J}_{k} + U_{k}\delta\vec{T} = \vec{K}_{k}$$

$$T_{k} : \text{ tri-diagonal with usual } - A_{ik}, B_{ik}, -C_{ik}$$

$$(\vec{K}_{k})_{i} = -f_{ik}(\vec{J}_{k}^{0}, \vec{T}^{0}) = 0$$

