

Stellar Atmospheres: Hydrostatic Equilibrium				
Ideal gas				
In stellar atmospheres: $M_r = M_*$ mass of atmosphere negligible $r = R_*$ thickness of atmosphere << stellar radius $\rightarrow dF_g = -\frac{GM_*\rho}{R_*^2} dAdr = g\rho dAdr$ with $g := \frac{GM_*}{R_*^2}$ surface gravity				
K_*	Туре	log g		
usually written as $\log(g/\cos s)$	Main sequence star	4.0 4.5		
$\log g$ is desides I_{eff} the 2nd	Sun	4.44		
fundamental parameter of	Supergiants	0 1		
static stellar atmospheres	White dwarfs	~8		
	Neutron stars	~15		
	Earth	3.0 3		

Stellar Atmospheres:	Hydrostatic	Fauilibrium
otonar / tanoophoroo.	riyarootatio	Equilibrium

Atmospheric pressure scale heights			
Earth:	$ \begin{array}{l} A \approx 28 (\text{N}_2) \\ T \approx 300 \text{K} \\ \log g = 3 \end{array} \end{array} H = 9 \text{km} \qquad H = \frac{kT}{gAm_{\text{H}}} $		
Sun:	$ A = 1 (H) T \approx 6000 K log g = 4.44 $ $H = 180 \text{ km}$		
White dwarf:	$A = 0.5 (H^{+} + n_{e})$ T = 15000 K $\log g = 8$ H = 0.25 km		
Neutron star:	$A = 0.5 (H^{+} + n_{e})$ $T = 10^{6} K$ $\log g = 15$ H = 1.6 mm !	5	

Stellar Atmospheres: Hydrostatic Equilibrium

Effect of radiation pressure

Extended hydrostatic equation

$$\frac{dP}{dr} = g\rho(r) - \frac{dP_R}{dr} = g\rho(r) - \frac{4\pi}{c} \int_0^\infty \kappa(v) H_v dv$$

 $= g_{\rm eff}(r)\rho(r)$

definition: effective gravity

$$g_{\text{eff}}(r) := g - \frac{4\pi}{c} \frac{1}{\rho(r)} \int_{0}^{\infty} \kappa(v) H_{v} dv = g - g_{\text{rad}} \quad \text{(depth dependent!)}$$

In the outer layers of many stars:

$$g_{\text{eff}} < 0$$
 i.e. $g_{\text{rad}} = \frac{4\pi}{c} \frac{1}{\rho(r)} \int_{0}^{\infty} \kappa(v) H_{v} dv > g$

Atmosphere is no longer static, hydrodynamical equation Expanding stellar atmospheres, radiation-driven winds

Stellar Atmospheres: Hydrostatic Equilibrium **The Eddington limit** Estimate radiative acceleration Consider only (Thomson) electron scattering as opacity $\sigma(v) = \sigma_e$ (Thomson cross-section) q = number of free electrons per atomic mass unit Pure hydrogen atmosphere, completely ionized q=1Pure helium atmosphere, completely ionized q=2/4=0.5 $g_{rad}^e = \frac{4\pi}{c} \frac{1}{n_e m_H/q} \int_0^{\infty} \sigma_e n_e H_v dv = \frac{4\pi}{c} \frac{q}{m_H} \int_0^{\infty} \sigma_e H_v dv = \frac{4\pi}{c} \frac{q \sigma_e}{m_H} H$ Flux conservation: $H = \frac{\sigma}{4\pi} T_{eff}^4$ $\Gamma_e = \frac{g_{rad}^e}{g} = \frac{4\pi}{c} \frac{q \sigma_e}{m_H} \frac{\sigma}{4\pi} T_{eff}^4 / G \frac{M}{R^2} = \frac{1}{c} \frac{q \sigma_e}{m_H} \frac{1}{4\pi G} \frac{4\pi \sigma R^2 T_{eff}^4}{M}$ $\Gamma_e = \frac{q \sigma_e}{4\pi c m_H G} \frac{L}{M} = 10^{-4.51} q \frac{L/L_{\odot}}{M/M_{\odot}}$ Stellar Atmospheres: Hydrostatic Equilibrium

The Eddington limit

Consequence: for given stellar mass there exists a maximum luminosity. No stable stars exist above this luminosity limit.

$$L_{\rm max}/L_{\odot} = 10^{-4.51} \cdot 1/q \cdot M/M_{\odot}$$

Sun: Γ_e <<1

Main sequence stars (central H-burning) Mass luminosity relation: $L/L_{\odot} \approx (M/M_{\odot})^{3} \rightarrow M_{max} = 180M_{\odot}$ Gives a mass limit for main sequence stars Eddington limit written with effective temperature and gravity $\Gamma_{e} = 10^{-15.12} q T_{eff}^{4} / g = 1$ $-15.12 + \log q + 4 \log T_{eff} - \log g = 0$ Straight line in ($\log T_{eff} \log g$)-diagram

Stellar Atmospheres: Hydrostatic Equilibrium

Computation of electron density

At a given temperature, the hydrostatic equation gives the gas pressure at any depth, or the total particle density *N*:

 $P_{\text{gas}} = NkT$ $N = N_{\text{atoms}} + N_{\text{ions}} + n_{\text{e}} = N_{\text{N}} + n_{\text{e}} \quad N_{\text{N}} \text{ massive particle density}$ The Saha equation yields for given $(n_{e'}T)$ the ion- and atomic densities N_{N} .

The Boltzmann equation then yields for given (N_N, T) the population densities of all atomic levels: n_i .

Now, how to get n_e ?

We have *k* different species with abundances α_k Particle density of species *k*:

$$N_k = \alpha_k N_N = \alpha_k (N - n_e)$$
, and it is $\sum_{k=1}^{K} N_k = N_N$

11

