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Radiative Equilibrium

Assumption:

Energy conservation, i.e., no nuclear energy sources
Counter-example: radioactive decay of Ni% —Co0% —Fe5% in
supernova atmospheres

Energy transfer predominantly by radiation

Other possibilities:

Convection e.g., H convection zone in outer solar layer
Heat conduction e.g., solar corona or interior of white dwarfs

Radiative equilibrium means, that we have at each location:

Radiation energy absorbed / sec integrated over all

frequencies and
= angles

Radiation energy emitted / sec
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Radiative Equilibrium

Absorption per cm? and second: § da)j' dvk(v)I,
Ar 0

Emission per cm? and second: ﬁfda’j dvn(v)
4 0

Assumption: isotropic opacities and emissivities
Integration over dw then yields

]id\/l((v)Jv = Tdvn(v) = TK’(V)(JV -3, )dv =0

Constraint equation in addition to the radiative transfer
equation; fixes temperature stratification T'(r)

Stellar Atmospheres: Radiative Equilibrium

Conservation of flux
Alternative formulation of energy equation
In plane-parallel geometry: 0-th moment of transfer equation

dH,
dt

=x(J,-S,) -

Integration over frequency, exchange integration and
differentiation:

%J.H dv= j k(J,—-S,)dv=0  because of radiative equilibrium
0

0

=H= IH ,dv = const = %Te‘;f for all depths. Alternatively writteng,
0

R T dK
IH Ldv= < T = I—‘ dv (1st moment of transfer equation)
0 4w o At

oo

L [AUL) gy

e (definiton of Eddington factor)
o dr 4r
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Which formulation is good or better?

I Radiative equilibrium: local, integral form of energy
equation

Il Conservation of flux: non-local (gradient), differential form
of radiative equilibrium

I/ Il numerically better behaviour in small / large depths

Very useful is a linear combination of both formulations:

A-FK(JV —Sv)dv}+3-ﬁd(£”;_]”)dv—H}:0

0

A,B are coefficients, providing a smooth transition between
formulations | and II.
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Flux conservation in spherically symmetric geometry

0-th moment of transfer equation:

L2 )= k(5,7
e or

o

=N %[ﬁ!HVdVJ =7 [ (S, = J,)dv=0

0

r2ijdv — const=— ~L because L=167"R*H
0 lorx
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Another alternative, if T de-couples from radiation field
Thermal balance of electrons

0" -0°=0
Oy = 4ﬂ-nezNjJ.aff,j(VaT)JvdV
J 0
T 27 .
in =4r neZNj.[afﬂj (v, T)[JV +02Je WIKT g,
J 0
Qg =4z Z n, J. ot i (V)Jv[l —V”‘Jdv
Lk o v
v = f Vik %"3 —hv/kT
O —471'an.|.0{bﬂ/k(v).]v 1-——% 0 J + Tl dv
Lk 0 % c
0! =1, n,q,, (1),
I,m

QCC =n, Z ndq, (T)hvlm 7
1,m
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The gray atmosphere

Simple but insightful problem to solve the transfer equation
together with the constraint equation for radiative equilibrium
Gray atmosphere: g, = %
Moments of transfer equation
(1) d}iv =J,-S, (i) dKTv =H, with 7=xdt
Integration over frequency

H dK
(1) Z—T:J—S (1) <=
Radiative equilibrium [ x(J, =S, )dv=x[(J,=S,)dv=J -5 =0
=(1) J=S

H

. dH
and because of conservation of flux —=0
T

=(I) d K =0=K=c¢t+c, from (II) follows c, =d—K=H, ¢, see below
dr dr

— =

8
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The gray atmosphere

Relations (/) und (/l) represent two equations for three
quantities S,J,K with pre-chosen H (resp. T )

Closure equation: Eddington approximation -
K=1/3] »S=J=3K=3Ht+3c, ()
Source functionis linearin t
Temperature stratification?
In LTE:
S(r)=B(T()=21"
V4

insert into (/I7): Iri 3H7t+3c,
z

o

pye Ty we get:

with H =

s (7) N oT,7+3c, (IV) ¢, is now determined from boundary condition (7=0)
z z
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Gray atmosphere: Outer boundary condition

Emergent flux:

H(O):%J.S(T')EZ(T')dT' with § from (111) -
0
- % [GHT +3¢,)E,(7)d
0
= ;{H [ E,@)dt'+c, [ E, (r')dr’}
0 0
'thmtlE £t =" and t—i[” tE t]
wi j  (Odt = and E,(0) =~ —[e” ~E, (1) -

311 1 2
HO)==|-H+—¢,|>c,=—H
(0) 2{3 2czi| G 3

4

2 2
from (IV):  ={T* :3Te‘;{r+3), S:3H(1+3) (from 111)
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Avoiding Eddington approximation

Ansatz:  J(r)=3H(t+q(r)) generalization of (III)
q(7) = Hopf function

J(0) =§%Te‘;(r+q(r»

Insert into Schwarzschild equation: -

J(7)=AS =AJ integral equation forJ

=7+ (,](T) = % J. (T,-f- q(T'))El QT,— T‘)d’l', (*) integral equation for g, see below
0

Approximate solution for J by iteration (“Lambda iteration®)

J(l) — 3H(T+ 2/3) i.e., start with Eddington approximation

JP =AJV = ABH(1+2/3))= 3H(r+§ —%Ez(r) +%E3 (r))-

(was result for linear S) 1
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At the surface r=0,E2(0)=1,E3(0)=%

J? :3H(1+2—1+1): 3H (7 +0.583)
3 3 4 exact: §(0)=0.577....
Atinner boundary z=c, E (e0)=0,E,(e0)=0

J? =3H[T+§)

Basic problem of Lambda lteration: Good in outer layers, but
does not work at large optical depths, because exponential
integral function approaches zero exponentially.

Exact solution of (*) for Hopf function, e.g., by Laplace
transformation (Kourganoff, Basic Methods in Transfer Problems)

Analytical approximation (Unsdld, Sternatmospharen, p. 138)

q(7) = 0.6940-0.1 167719727
12
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Gray atmosphere: Interpretation of results

Temperature gradient

iT4 4T3 =2 ar éT;}f
dr dr 4

dr ., The higher the effective temperature, the steeper the
dr < temperature gradient.

dr _ 4T The larger the opacity, the steeper the (geometric) temperature
dt dr gradient.

Flux of gray atmosphere | 1g. 5 _ 5 (7(5)
H,,(T)=%IBV(T(T))E2(1—T)df—%:[Bv(T(T))Ez(T_[)dt

with &= hv/kTy , T/T =[3/4(c+q()]" = p(z) = hv/kT = ap(z)
H,da=Hdy and H=9 T

S oy = Ay AT Ky ATK (“’ E(t-7) _I E (1) j
Hda oly h " hgia \;explap(n)- 1 o exp(ap(r))—1
120 ark 13
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Gray atmosphere: Interpretation of results
Limb darkening of total radiation

1(r=o,u)=S(r=u)=B(T(r=u))="T“(r=u)=‘;T;‘ffi(wij
100,1) _p+2/3 2(1+ cos )
10,1) 1+2/3 2
i.e., intensity at limb of stellar disk smaller than at center by
40%, good agreement with solar observations

Empirical determination of temperature stratification -
measure [(7=0,u) > ST=1)—>S@)=B(T (7)) >T
Observations at different wavelengths yield different T-

structures, hence, the opacity must be a function of
wavelength

14
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The Rosseland opacity

Gray approximation (kx=const) very coarse, ist there a good
mean value x ? What choice to make for a mean value?

gray non-gray

transfer equation #ﬂ =x(S—1) ﬂﬂ =k ()(S, —1,)
dz dz

0-th moment dH _ xk(S-J)=0 aH, _ Kk(W)(S, —=J,)
dz dz

Ist moment K _ —xH K, _ -x(VH,
dz dz '

For each of these 3 equations one can find a mean &, with
which the equations for the gray case are equal to the
frequency-integrated non-gray equations.

Because we demand flux conservation, the 1st moment
equation is decisive for our choice:
— Rosseland mean of opacity

15
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The Rosseland opacity

T 1 dK, 1 dK
i PRR s
x(v) dz Ky dz

IHvdv =const=
0 0

oo

[ I dK,
d.
i:% with Eddington approximation K =1/3J and LTE J =B:
KR R
dz
T 1 dB, y
d.
Lons0 g BT B _d (o) Ao
Ky daB dz dT dz dz dz\rw T dz
dz
jLas
1 k() dT
K, 40 1s
b4

Definition of Rosseland mean of opacity

16
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The Rosseland opacity

The Rosseland mean Ki is a weighted mean

R

of opacity _ ! with weight function 9B.
K(v) dT

Particularly, strong weight is given to those frequencies,
where the radiation flux is large.
The corresponding optical depth is called Rosseland depth

Trou (2) = [ K0 ()’
0
For 7, >>1 the gray approximation with x, is very good,

. 3
| .e- T4 (TRO.YS ) = Z Iwe‘;f (TRO.YS + q(TRo.m ))

17
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Convection

Compute model atmosphere assuming

+ Radiative equilibrium (Sect. VI) — temperature stratification

» Hydrostatic equilibrium — pressure stratification

Is this structure stable against convection, i.e. small
perturbations?

* Thought experiment

Displace a blob of gas by Ar upwards, fast enough that no heat
exchange with surrounding occurs (i.e., adiabatic), but slow

enough that pressure balance with surrounding is retained (i.e.
<< sound velocity)

18
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Inside of blob outside

T+AT, =T, (r+Ar)
o+Ap,, = p,,(r+Ar)

T+AT,, =T, ,(r+Ar)
PHAP = P (T +AF)

7(r), pir)

P.a(r+Ar) < p_,(r+ Ar) — further buoyancy, unstable
Pa(r+ Ar) > p,.4(r +Ar) — gas blob falls back,

dp. dp,,| |unstable
dr dr
with ideal gas equation p=
dT,, |<| dT,, |unstable
dr dr
Stratification becomes unstable, if temperature gradient d7,,/dr
. " 19
rises above critical value

ie.

pT and pressure balance p,,7,,=p,..]..q
H
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Alternative notation

Pressure as independent depth variable:

hydrostatic equation: dp =—pg_.dr = ’ZH %dr (ideal gas)
—>dr=—dp kK
Amngffp
dar AmH dT/T __Am,  d(nT)
ok Saplp k S"d(np)
d(InT,) [<| d(InT,,) |unstable
d(In p) d(In p)

Schwarzschild criterion

Abbreviated notation
d(hl ) d(ln rad)
“ d(np)’ Vi = d(In p)

20
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The adiabatic gradient

dQ =0 (no heat exchange)
dQ =dE + pdV (1st law of thermodynamics)
dE =c,dT internal energy = c,dT + pdV =0 (*)

Internal energy of a one-atomic gas excluding effects of

ionisation and excitation
E:ENkT—wV =3 Nk
2 2

But if energy can be absorbed by ionization:

3
cy >> ENk
Specific heat at constant pressure
00 dE  dV d(NKT/ p) Nk
= —— =—+4 p— = +p—= + p—
CP aT p=const dT p dT p=const CV p dT CV p

—c¢,—cy =Nk

21
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The adiabatic gradient

Ideal gas: pV’ = NkT = Vdp+ pdV = NkdT =(c, —c, )dT
_ Vdp + pdV

¢, = ¢y
/pV
. Vip+p
from(*) with (**) —c,——————+pdV' =0 |c,—cy
¢, —Cy —_—
CV
p Vo
p Ve
c
—Ld(InV)=-d(In p)
CV
& d(nV) 1

definition: y:= =
¢y d(lnp) 4

22
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The adiabatic gradient

d(InT)

d(In p)| ,

T =pV/Nk
In7T=Inp+InV —In(Nk)
d(InT) :1+d(an)
d(In p) d(In p)
d(InT) :1_127_—1
d(In p) Yo7

needed:

Schwarzschild criterion

23
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The adiabatic gradient

 1-atomic gas ¢y =3/2 Nk c, =cy+ Nk =5/2 Nk
y=5/3 V,=2/5=04
« with ionization y—1 V, —0 convection starts y—effect
* Most important example: Hydrogen (Unsdld p.228)
v - 2+(x—x7)(5/2+E,,/kT)
Y54 (x=x)(5/2+ Ep KT’

S, [f(r>j2+f(r>
2N 2N N

with ionization degree x =—

24
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Wasserstoff
. 10 T Trae =]
The adiaba |
X i Tonisationsgrad
2+(x=x*)(52+E,, /kKT)
ad = 2 2 Sos [ N=10Pem?
5+(x—x")(52+E,,/kT) 2
2
__Im, (f(T)j LS
2N 2N N
0.0 / : _
5 10 163)
Temperatur / 1000 K
R
U | adiabatischer Temperaturgradient T
Vad N=10"cm™
;;0.4 —
02 =
0.0 L L | s L L L Il L L n L |

> 10 15

Temperatur / 1000 K
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Example: Grey approximation
r'@=Y1(+%)
4InT =n(3, T )+In(7+24)
d(in(z+24 ))

4dt
hydrostatic equation: Z:— =£ Ansatz: k= Ap”  (x here a mass absorption coefficient)
T K
vdp _8 integrate—)ip””:gr e%:$
dr A b+1 A Ap™  (b+Dr
dinp) _1dp 1 g _ g _ 1
dr pdr pdp" A" (b+Dr

vV - _ (b+Dr
T /79c12'_4(¢+%)

V.. becomes large, if opacity strongly increases with depth (i.e. exponent b large).
The absolute value of x is not essential but the change of x with depth (gradient)
V . large (>V ,): convection starts, x-Effekt

26
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Hydrogen convection zone in the Sun

k-effect and y-effect act together

Going from the surface into the interior: At T~6000K ionization of
hydrogen begins

V4 decreases and « increases, because a) more and more
electrons are available to form H™ and b) the excitation of H is
responsible for increased bound-free opacity

In the Sun: layers of atmosphere
inner layers of atmosphere convective
In F stars: large parts of atmosphere convective

In O,B stars: Hydrogen completely ionized, atmosphere
He | and He Il ionization zones, but energy transport by
convection inefficient

27
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Transport of energy by convection

Consistent hydrodynamical simulations very costly;
Ad hoc theory: mixing length theory (Vitense 1953)

Model: gas blobs rise and fall along distance / (mixing length).
After moving by distance / they dissolve and the surrounding
gas absorbs their energy.

| =aH(r) H=pressure scale height
o mixing length parameter
a=0.5 -2

Gas blobs move without friction, only accelerated by buoyancy;
detailed presentation in Mihalas’ textbook (p. 187-190)

28
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Transport of energy by convection
Again, for details see Mihalas (p. 187-190)

For a given temperature structure

— compute F,  (7)

— flux conservation including convective flux
F _O i _fp iterate
rad (l”) - ; eff — £ conv (V)

— new temperature stratification 7'(r)
with V , <V <V

rad

29
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Summary: Radiative Equilibrium

30
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Radiative Equilibrium:

dt

0 0

Schwarzschildt Criterion:

d(InT,) |<| d(InT,,) [unstable
d(In p) |>] d(Inp) |stable

Temperature of a gray Atmosphere

T =§T;;f(r+2)
4 3

A-ﬁK(JV—Sv)dv}+B-ﬁd(fVJv)dv—H}:O

31
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