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Radiative Equilibrium

Energy conservation
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Radiative Equilibrium

Assumption:
Energy conservation, i.e., no nuclear energy sources 
Counter-example: radioactive decay of  Ni56 →Co56 →Fe56 in 
supernova atmospheres 
Energy transfer predominantly by radiation 
Other possibilities:
Convection e.g., H convection zone in outer solar layer
Heat conduction  e.g., solar corona or interior of white dwarfs

Radiative equilibrium means, that we have at each location:

Radiation energy absorbed / sec 
=

Radiation energy emitted / sec

integrated over all
frequencies and
angles
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Radiative Equilibrium

Absorption per cm2 and second:

Emission per cm2 and second:

Assumption: isotropic opacities and emissivities 
Integration over dω then yields

Constraint equation in addition to the radiative transfer 
equation; fixes temperature stratification T(r)
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Conservation of flux
Alternative formulation of energy equation
In plane-parallel geometry: 0-th moment of transfer equation

Integration over frequency, exchange integration and 
differentiation:
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Which formulation is good or better? 

I Radiative equilibrium: local, integral form of energy
equation 

II Conservation of flux: non-local (gradient), differential form 
of radiative equilibrium

I / II numerically better behaviour in small / large depths
Very useful is a linear combination of both formulations:

A,B are coefficients, providing a smooth transition between
formulations I and II. 
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Flux conservation in spherically symmetric geometry

0-th moment of transfer equation:
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Another alternative, if T de-couples from radiation field
Thermal balance of electrons
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The gray atmosphere
Simple but insightful problem to solve the transfer equation
together with the constraint equation for radiative equilibrium
Gray atmosphere: κκν =
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The gray atmosphere

Relations (I) und (II) represent two equations for three
quantities S,J,K with pre-chosen H (resp. Teff)
Closure equation: Eddington approximation 

Source function is linear in τ
Temperature stratification?
In LTE:
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Gray atmosphere: Outer boundary condition

Emergent flux:
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Avoiding Eddington approximation

Ansatz:

Insert into Schwarzschild equation:

Approximate solution for J by iteration (“Lambda iteration“)
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i.e., start with Eddington approximation

(was result for linear S)
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At the surface

At inner boundary 

Basic problem of Lambda Iteration: Good in outer layers, but
does not work at large optical depths, because exponential 
integral function approaches zero exponentially. 
Exact solution of (*) for Hopf function, e.g., by Laplace
transformation (Kourganoff, Basic Methods in Transfer Problems)

Analytical approximation (Unsöld, Sternatmosphären, p. 138)
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Gray atmosphere: Interpretation of results
Temperature gradient

The higher the effective temperature, the steeper the      
temperature gradient.
The larger the opacity, the steeper the (geometric) temperature 
gradient.

Flux of gray atmosphere
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Gray atmosphere: Interpretation of results
Limb darkening of total radiation

i.e., intensity at limb of stellar disk smaller than at center by
40%, good agreement with solar observations

Empirical determination of temperature stratification

Observations at different wavelengths yield different T-
structures, hence, the opacity must be a function of 
wavelength
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The Rosseland opacity
Gray approximation (κ=const) very coarse, ist there a good 
mean value     ? What choice to make for a mean value?

For each of these 3 equations one can find a mean   , with 
which the equations for the gray case are equal to the 
frequency-integrated non-gray equations. 
Because we demand flux conservation, the 1st moment
equation is decisive for our choice:                                         
→ Rosseland mean of opacity

transfer equation
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The Rosseland opacity

Definition of Rosseland mean of opacity
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The Rosseland opacity

The Rosseland mean       is a weighted mean 

of opacity        with weight function

Particularly, strong weight is given to those frequencies, 
where the radiation flux is large. 
The corresponding optical depth is called Rosseland depth

For              the gray approximation with         is very good,

i.e. 
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Convection

Compute model atmosphere assuming 
• Radiative equilibrium (Sect. VI) → temperature stratification
• Hydrostatic equilibrium              → pressure stratification
Is this structure stable against convection, i.e. small

perturbations?
• Thought experiment
Displace a blob of gas by ∆r upwards, fast enough that no heat

exchange with surrounding occurs (i.e., adiabatic), but slow
enough that pressure balance with surrounding is retained (i.e. 
<< sound velocity)
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Inside of blob                    outside

Stratification becomes unstable, if temperature gradient 
rises above critical value. 
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Alternative notation

Pressure as independent depth variable:

Schwarzschild criterion
Abbreviated notation
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The adiabatic gradient

Internal energy of a one-atomic gas excluding effects of 
ionisation and excitation

But if energy can be absorbed by ionization:

Specific heat at constant pressure
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The adiabatic gradient
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The adiabatic gradient
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The adiabatic gradient

• 1-atomic gas

• with ionization
• Most important example: Hydrogen (Unsöld p.228)
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The adiabatic gradient
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Example: Grey approximation
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Hydrogen convection zone in the Sun

κ-effect and γ-effect act together
Going from the surface into the interior: At T~6000K ionization of 

hydrogen begins
∇ad decreases and κ increases, because a) more and more 

electrons are available to form H− and b) the excitation of H is 
responsible for increased bound-free opacity

In the Sun: outer layers of atmosphere radiative
inner layers of atmosphere convective

In F stars: large parts of atmosphere convective
In O,B stars: Hydrogen completely ionized, atmosphere radiative;   

He I and He II ionization zones, but energy transport by 
convection inefficient

Video
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Transport of energy by convection
Consistent hydrodynamical simulations very costly;
Ad hoc theory: mixing length theory (Vitense 1953)
Model: gas blobs rise and fall along distance l (mixing length). 
After moving by distance l they dissolve and the surrounding 
gas absorbs their energy. 

Gas blobs move without friction, only accelerated by buoyancy;
detailed presentation in Mihalas‘ textbook (p. 187-190)
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Transport of energy by convection

Again, for details see Mihalas (p. 187-190)

For a given temperature structure
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Summary: Radiative Equilibrium
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Radiative Equilibrium:

Schwarzschildt Criterion:

Temperature of a gray Atmosphere
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3 hours
Stellar

Atmospheres…
…per day… …is too much!!!   


