

The non-LTE Rate Equations

Statistical equations

Population numbers LTE: population numbers follow from Saha-Boltzmann

Stellar Atmospheres: Non-LTE Rate Equations

equations, i.e. purely local problem

 $n_i^* = n_i^*(T, n_e)$

Non-LTE: population numbers also depend on radiation field. This, in turn, is depending on the population numbers in all depths, i.e. non-local problem.

$$n_i = n_i \left(T, n_e, J \right)$$

The Saha-Boltzmann equations are replaced by a detailed consideration of atomic processes which are responsible for the population and de-population of atomic energy levels:

Excitation and de-excitation

by radiation or collisions

Ionization and recombination

Stellar Atmospheres: Non-LTE Rate Equations		
Radiative rates: bound-free transitions		
Also possible: ionization into excited states of parent ion		
Example C III:		
Ground state	2s ² ¹ S	
Photoionisation produces C IV in	n ground state	2s ² S
C III in first excited state 2	s2p ³ P ^o	
Two possibilities:		
Ionization of 2p electron \rightarrow C IV	in ground state	2s ² S
Ionization of 2s electron \rightarrow C IV	in first excited state	2p ² P
C III two excited electrons, e.g. 2p ² ³ P		
Photoionization only into excited	I C IV ion	2p ² P

Radiative rates: bound-free transitions

Number of photoionizations = absorbed energy in dv, divided by photon energy, integrated over frequencies and solid angle

$$\int_{0}^{\infty} \oint n_i p_v I_v d\omega dv \to n_i R_{ij} = n_i 4\pi \int_{0}^{\infty} \frac{\sigma_{ij}(v)}{hv} J_v dv$$

Number of spontaneous recombinations:

$$\int_{0}^{\infty} \prod n_{i} n_{e}(\mathbf{v}) F(\mathbf{v}) d\omega \mathbf{v} d\mathbf{v} \to n_{j} R_{ji} = n_{j} 4\pi \int_{0}^{\infty} n_{e}(\mathbf{v}) \frac{2hv^{3}}{c^{2}} G(\mathbf{v}) \frac{h}{m} dv$$

$$n_{j} R_{ji} = n_{j} 4\pi \int_{0}^{\infty} n_{e}(\mathbf{v}) \frac{2hv^{3}}{c^{2}} p_{v} \frac{m}{h} e^{-hv/kT} \left(\frac{n_{i}}{n_{j}}\right)^{*} \frac{1}{n_{e}(\mathbf{v})} \frac{h}{m} dv$$

$$n_{j} R_{ji} = n_{j} \left(\frac{n_{i}}{n_{j}}\right)^{*} 4\pi \int_{0}^{\infty} \frac{\sigma_{ij}(\mathbf{v})}{hv} \frac{2hv^{3}}{c^{2}} e^{-hv/kT} dv$$

Electron collisional rates

Transition $i \rightarrow j$ (*j*: bound or free), $\sigma_{ij}(v)$ = electron collision cross-section, v = electron speed

Total number of transitions $i \rightarrow j$:

 $n_i C_{ij} = n_i n_e \int \sigma_{ij}(\mathbf{v}) f(\mathbf{v}) \mathbf{v} d\mathbf{v} = n_i n_e \Omega_{ij}(T)$

 v_0 minimum velocity necessary for excitation (threshold) f(v)dv velocity distribution (Maxwell)

In TE we have therefore

Total number of transitions $j \rightarrow i$:

 $n_{i}^{*}C_{ii} = n_{i}^{*}C_{ii}$

 $\mathbf{n}_{j}C_{ji} = \mathbf{n}_{j}\left(\frac{n_{i}}{n_{j}}\right)^{*}C_{ij}$

11

Stellar Atmospheres: Non-LTE Rate Equations Computation of collisional rates: Ionization The Seaton formula is in analogy to the van-Regemorter formula in case of excitation. Here, the photon absorption cross-section for ionization is utilized: $C_{ij} = 1.55 \cdot 10^{13} \sigma_0 \overline{g} \frac{n_e}{\sqrt{T}} \frac{e^{-u}}{u_0}$ σ_0 = threshold photon cross-section for ionization 0.1 for ions with charge Z = 1 $\overline{g} = \{0.2 \text{ for ions with charge } Z = 2\}$ 0.3 for ions with charge Z > 2Alternative: semi-empirical formula by Lotz (1968): $C_{ij} = C_0 n_e \sqrt{T} 2.5 a \left(\frac{E_H}{E_0}\right)^2 u_0 \left[E_1(u_0) - b e^c u_0 E_1(u_1) / u_1\right]$ $u_1 = u_0 + c$ a,b,c empirical quantities, adjusted to individual atoms For H und He specific fit formulae are used, mostly from Mihalas 15 (1967) and Mihalas & Stone (1968)

Computation of rates

Number of dielectronic recombinations from c to b:

 $n_c R_{cb} = n_d A_s$ A_s = probability for spontaneous stabilizing transition

In the limit of weak radiation fields the reverse process can be neglected. Then we obtain (Bates 1962):

 $n_d = n_d^* A_a / (A_a + A_s)$ with $n_d^* = n_c n_e C_1 T^{-3/2} e^{E_{lon}^d / kT} = n_c n_e \Phi_{cd}(T)$ A_a = transition probability for autoionization

So, the number of dielectronic recombinations from c to b is:

 $n_c R_{cb} = n_c n_e \Phi_{cd}(T) A_s A_a / (A_a + A_s)$

17

<text><section-header><list-item><list-item><list-item><list-item><list-item><table-container>

LTDR

The radiation field in photospheres is **not** weak, i.e., the reverse process $b \rightarrow d$ is induced

Recombination rate:

$$n_c R_{cb} = n_c n_e \Phi_{cd}(T) A_s \left(1 + \frac{c^2}{2hv^3} \overline{J} \right)$$

J mean intensity in stabilizing transition, i.e.,

given by continuum value (line very broad, because short lifetime)

Reverse process:

$$n_b R_{bc} = n_b B_{bd} \overline{J} = n_b A_s \frac{c^2}{2hv^3} \frac{g_d}{g_b} \overline{J}$$

These rates are formally added to the usual ionization and recombination rates and do not show up explicitly in the rate equations.

19

Closure equation

One equation for each chemical element is redundant, e.g., the equation for the highest level of the highest ionization stage; to see this, add up all equations except for the final one: these rate equations only yield population **ratios**.

We therefore need a closure equation for each chemical species:

Abundance definition equation of species k, written for example as number abundance y_k relative to hydrogen:

$$v_k = \frac{\sum \text{population numbers of species } k}{\sum \text{population numbers of hydrogen}}$$

21

Stellar Atmospheres: Non-LTE Rate Equations **Solution by linearization** The equation system $\underline{An} = \underline{b}$ is a linear system for \underline{n} and can be solved if, n_e, T, \overline{J}_v are known. But: these quantities are in general unknown. Usually, only approximate solutions within an iterative process are known. Let all these variables change by $\delta n_e, \delta T, \delta J_v$ e.g. in order to fulfill energy conservation or hydrostatic equilibrium. Response of populations $\delta \underline{n}$ on such changes: Let $\underline{An} = \underline{b}$ with actual quantities And $(\underline{A} + \delta \underline{A})(\underline{n} + \delta \underline{n}) = (\underline{b} + \delta \underline{b})$ with new quantities n_e, T, J_v Neglecting 2nd order terms, we have: $\underline{An} - \underline{b} = -\delta \underline{n} - \underline{n}\delta \underline{A} + \delta \underline{b}$

