

Radiation Transport as Boundary-Value Problem of Differential Equations

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem					
Comparison Rybicki vs. Feautrier					
Thomson scattering					
	Feautrier	Rybicki	_		
Plane-parallel	C NA ³ ND	C ₁ NA ND ² + C ₂ ND ³	-		
Spherical	C ND ⁴	C ₁ NP ND ² + C ₂ ND ³	_		
Few angular points: take Feautrier Many angular points: take Rybicki					
			46		

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem				
Comparison Rybicki vs. Feautrier				
Line scattering or non-coherent scattering, e.g. Compton scattering				
	Feautrier	Rybicki		
Plane-parallel	C NA ³ NF ³ ND	C ₁ NA NF ND ² + C ₂ ND ³		
Spherical	C NF ³ ND ⁴	C ₁ NP NF ND ² + C ₂ ND ³		
Few frequency points: take Feautrier or Rybicki Many frequency points: take Rybicki Spherical symmetry: take Rybicki				

Eltar Attrospheres: Radiation Transport as Boundary-Value Problem

$$\begin{aligned}
\frac{d\left(r^{2}q(r)K\right)}{dr} &= \frac{d\left(r^{2}q(r)\right)}{dr}K + r^{2}q(r)\frac{dK}{dr}\\
&= r^{2}q(r)\left[\frac{3f-1}{rf}fJ + \frac{d(fJ)}{dr}\right] = r^{2}q(r)(-\kappa H)
\end{aligned}$$
Is the moment equation:

$$\begin{aligned}
\frac{d\left(r^{2}q(r)K\right)}{r^{2}q(r)dr} &= -\kappa H \rightarrow \frac{d\left(qf\tilde{J}\right)}{q\kappa dr} = -\tilde{H}\\
\xrightarrow{dx=-q\kappa dr}\\
\frac{d\tilde{H}}{dx} &= \frac{1}{q}\left(\tilde{J}-\tilde{S}\right)\\
&= \tilde{H}\end{aligned}$$

$$\begin{aligned}
\frac{d\left(qf\tilde{J}\right)}{dx^{2}} &= \tilde{H}\end{aligned}$$

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Non-coherent scattering and moment equation

Two-level atom or Compton scattering $S_L = \alpha \overline{J} + \beta$ For each frequency point one moment equation of 2nd order for mean intensity and Eddington factor $J_v(v_k)$, $f_{ik}(\tau_i, v_k)$ Coupled by frequency integral $\overline{J} = \int J_v \varphi(v) dv \rightarrow \overline{J} = \sum_{k=1}^{NF} J_k w_k$ pp $J_v(\tau, v) - \frac{d^2 \left(f(\tau, v) J_v(\tau, v) \right)}{d\tau^2(v)} - \alpha \int_v J_v \varphi(v) dv = \beta(\tau)$ sp $\tilde{J}_v(r, v) - q(r, v) \frac{d^2 \left(q(r, v) f(r, v) \tilde{J}_v(r, v) \right)}{dx^2(v)} - \alpha \int_v \tilde{J}_v \varphi(v) dv$ $= \tilde{\beta}(v)$

59

Stellar Atmospheres: Radiation Transport as Boundary-Value ProblemNon-coherent scattering and moment equationFeautrier: $\vec{J}_i = [J_{i1}, \dots, J_{ik}, \dots, J_{iNF}]^T$, $i = 1 \dots ND$ cpu-time~ND•NF³ $-A_i \vec{J}_{i-1} + B_i \vec{J}_i - C_i \vec{J}_{i+1} = \vec{\beta}_i$ $d^2(jJ)$ $\vec{J}_i = \sum_{k=1}^{NF} J_{ik} W_k$ Rybicki: $\vec{J}_k = [J_{1k}, \dots, J_{ik}, \dots, J_{NDk}]^T$, $k = 1 \dots NF$ $\vec{J} = [\vec{J}_1, \dots, \vec{J}_i, \dots, \vec{J}_{ND}]^T$ $\vec{K}_k \vec{J}_k + U_k \vec{J} = K_k$, $\sum_{k=1}^{NF} W_k \vec{J}_k - \vec{J} = 0$ cpu-time~NF•ND²+ND³

