introduction

• global configuration

- radiation belts
- corotational flow
- composition

dynamics

- particle injections
- reconnection in the magnetotail
- periodicity

magnetosphere-moon/ring material interaction

- ring material
- Enceladus plume
- orbiting material around Rhea
- summary and open questions

Magnetopause Magnetotail Energetic particle measurements at Jupiter and Saturn **Norbert Krupp** Aurorae Max-Planck-Institut für Sonnensystemforschung **IMPRS** lecture MPS, Feb. 25, 2009 Solar magnetic field Solar wind

Introduction

Introduction: Comparison of the magnetospheres of Jupiter and Earth

Introduction: Jupiter's magnetosphere

rotation-dominated, lo source

explored by spacecraft flybys P10, P11, V1, V2, ULS, Cass, NH

and one orbiter Galileo

planned missions JUNO, EJSM?

Introduction: Saturn's magnetosphere

Krimigis et al, 2004

rotation-dominated, Enceladus source

explored by spacecraft flybys P11, V1, V2

and one orbiter **Cassini**

planned missions TSSM?

Introduction: Plasma sources of planetary magnetospheres

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
N _{max} cm ⁻³	~1	1-4000	>3000	~100	~3	~2
Compos ition	H⁺ Solar Wind	O+ H+ lono- sphere Solar wind	O ⁿ⁺ S ⁿ⁺ H ⁺ Io, Solar wind, ionosphere	O ⁺ H ₂ O ⁺ H ⁺ Rings, Enceladus Other icy moons Solar wind	H+ Iono- sphere	H ⁺ N ⁺ Triton, Iono- sphere
Source kg / s	?	5	700- 1200	~2-100	~0.02	~0.2

Introduction: Rotation-dominated magnetosphere

- plasmasphere in the inner magnetosphere with closed flow lines
- if scaled to Jupiter: closed flow lines outside the magnetosphere

Energetic particle observations at Jupiter and Saturn

Side View

Introduction: Magnetospheric coverage at Jupiter and Saturn

Galileo at Jupiter

Cassini at Saturn

Global configuration

Global configuration: Jupiter's radiation belts

simulations

Galileo Probe data

Pioneer 10 data

Bolton, 2004

Norbert Krupp

Global configuration: Saturn's radiation belts

radiation belt inside the D-ring

Krimigis, 2004

main radiation belts and transient belt near Dione's orbit

Roussos, 2008

ion energy spectrum in the main radiation belt Armstrong, 2009

IMPRS lecture, MPS, Katlenburg-Lindau Feb 25, 2009

Norbert Krupp

Global configuration: Macrosignatures in Saturn's inner magnetosphere

Proton intensity (protons per cm2 s sr keV) as a function of L shell during Saturn Orbit Insertion of Cassini. Positions of the Satellites Janus $(L \sim 2.5)$ and Mimas $(L \sim 3.1)$ are shown as sweeping corridors.

Paranicas et al., Icarus, 2008

Global configuration:

Macrosignatures in the energetic particle intensities from moons in the Saturnian magnetosphere

Global configuration: Structure and dynamics of the outer Jovian magnetosphere

Vasyliunas 1983

Global configuration: Particle flow pattern in Jupiter's magnetosphere

Galileo/EPD measurements in the equatorial plane

IMPRS lecture, MPS, Katlenburg-Lindau Feb 25, 2009

Global configuartion: Flow results from Galileo

- strong asymmetry between dawn and dusk
- corotation breakdown at 25-40 RJ dependent on local time

Woch et al., ASR 2004

Global configuration: Flow results in the Saturnian magnetosphere

Wilson, 2008

Kane, 2008

Global configuration Energetic ion composition in Jupiter's magnetosphere

Radioti et al., JGR, 2005, 2006

S/O-ratio of Galileo in plasmoids comparable with New Horizons results in the deep tail.

Sulfur and Oxygen from Io

Global configuration: Water ion products dominate Saturn's magnetosphere

water molecules from Enceladus

Global configuration: Plasma regions and sources at Saturn

Strong satellite & ring sputtering, weak ionization
N_{neutrals}~100 x N_{ions}

Global configuration: Jupiter's magnetosphere as a rotating system

Dynamics

Energetic particle observations at Jupiter and Saturn

Dynamics: Disturbances in the flow pattern of Jupiter's magnetosphere

Kivelson and Southwood, 2005

Dynamics: Energetic particle flow bursts and magnetospheric response in Jupiter's magnetotail

Dynamics: Particle observations in the deep Jovian magnetotail (New Horizons)

McComas, 2007

Dynamics: Particle injections in Jupiter's and Saturn's magnetosphere

Sudden radial injections over confined regions in azimuth followed by slow, dispersive, azimuthal drifts (Mauk et al.)

Dynamics: Overview of observed injection events in Saturn's magnetosphere

A. Müller, 2009

Dynamics Electron beams and their relation to auroral emissions at Saturn

- FUV auroral images from HST STIS instrument (Gérard et al., JGR 2009, 2007, 2004) [no observations of the aurora during the electron beam events]
- ~80 deg latitude feature corresponds to just inside m'pause; others are from much deeper in the magnetosphere.
- Periods of electron counterstreaming map into auroral zone. Beams map well in a statistical sense into the regions of Saturn's aurora.

Dynamics Electron beams and their relation to auroral emissions at Saturn

Saur et al., Nature, 2006

Dynamic: Energetic electron measurements at Jupiter (Galileo EPD observations)

Most prominent and well defined boundary \rightarrow change in the electron pitch angle distributions located between 10 and 17 R_{J.}

Dynamics: Periodicity of Saturn Kilometric Radiation

^{11.0} Cassini has found a different radio period than Voyager. The radio period is usually used to determine the rotation period of gas giant planets. A major mystery for Cassini to solve is the reason for the variation of the radio period.

Kurth et al., 2006

10.7

Period (hours)

10.5

10.6

10.8

10.9

Dynamics: Plasmoids and Tail Reconnection in Saturn's magnetotail

- Surveyed all Cassini tail data study of multiple events reveals clear rapid dipolarizations
- Events 35-55 RS downtail and midnight to post midnight sector
- Example day 216 2006. Northward turning of the magnetic field (theta component)
- Future work will involve a full multi-instrument study including MAG,CAPS, MIMI and RPWS.

Jackman et al., 2007

Magnetosphere-moon/ring material interaction

Magnetosphere-ring material interaction ring material in the Saturnian G-ring arc

Hedman et al., Science 2007 ; Roussos et al., Icarus 2007

- Cassini flew over the arc around the time the microsignature was recorded. Estimated mass of absorbers: 108 – 1010 kg (~100 m diameter sphere)
- Solution to the origin of the G-ring: Collisions between big particles produce micron-sized populations (visible arc); Non gravitational forces (mainly ion collisions) add momentum to the small dust grains → outward radial motion → G-ring

Norbert Krupp

Magnetosphere-moon interaction Enceladus- Imprint on the Saturnian magnetosphere

Norbert Krupp

Magnetosphere-moon interaction Enceladus plume

Magnetosphere-moon interaction Evidence for orbiting material around the Saturnian moon Rhea

Jones et al, Science, 2008

Jupiter: Summary and open questions

- Jupiter's magnetosphere sub-corotates on average out to at least 150 RJ in the magnetotail
- dawn-dusk asymmetry in the flow pattern inside 40-50 RJ with smaller velocities at dusk (correlated to thickness of plasma sheet and diffuse vs. discrete aurora)
- radial (tailward) periodic disruptions of flow pattern in predawn and midnight sector. Released plasmoids observed down the magnetotail at least out to > 2500 RJ
- Stagnated flow signatures in afternoon magnetosphere
- Galileo measurements restricted to equatorial plane. How does the high-latitude magnetosphere look like? → JUNO

Saturn: Summary and open questions

- Saturn's magnetosphere is rotation-dominated with Enceladus as the major internal plasma source
- Is there a corotation breakdown and is there a similar process responsible?
- What is the rate of corotation?
- What is the rotation rate of the Saturnian magnetosphere?
- Is there a steady state reconnection line in the magnetotail?

