Introduction

In real life :
Wavelet analysis, from the line to the two-sphere o nonstationary signals
@ wide spectrum of frequencies

@ often correlation (ex. human voice):
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Fourier analysis

Traditional tool : Fourier transform

1 <
s(x) < 5(&)= —/ e %s(x) dx
INTRODUCTION V2 o

@ no time localization : when does the 5(§) component occur ?

@ very uneconomical : (almost) flat signal (no information!) requires
summation of infinite series or calculation of integral

@ very unstable : tiny perturbation = Fourier spectrum completely
perturbed (FT is global)
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Effect of a localized perturbation

@ A pure sine wave and the same with two delta perturbations added

@ The respective Fourier transforms

@ The localized perturbations are completely delocalized in Fourier
space !

@ Conclusion : Fourier analysis is not sufficient !
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Time-frequency representation

Two simple solutions

@ Solution : Time-frequency representation
@ Two parameters are needed :

o frequency : whichone? «— a
e time : when ? — b

@ General linear time-frequency transform :
s(x) — S(b,a) = / p,a(x) s(x) dx,
— 00
where 1, , is the analyzing function.

@ Example : Musical score !
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A traditional time-frequency representation of a signal
(from Mozart's Don Giovanni, Act 1)
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@ Windowed Fourier transform or Gabor transform
Upa(x) = ePV/24)(x — b) :  a = modulation, b= translation

(1/a ~ frequency)
o Wavelet transform

wb,a(x) =

x—b . .
P ( ) . a=scaling, b= translation
a

5

o What is the difference between the two?
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Two simple solutions

1/a = frequency

"pb,a(x)

high

medium

low

The function 5 2(x) for different values of the scale parameter a :
in the case of the Windowed Fourier Transform (left);
in the case of the wavelet transform (right)
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Three stages of WT

o Continuous WT (CWT)

S(b,a) = |a| /2 /Oo 0 (Xab> s(x)dx, a#0,beR

. all values of a and b : useful for feature detection (often a > 0)

o Discretization of CWT

. discretization needed for numerical implementation

. choice of sampling grid

. no orthonormal bases, only frames (redundant representation)
@ Discrete WT (DWT)

. preselected grid (dyadic)

. (bi)orthonormal bases from multiresolution analysis

. good for data compression
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Three stages of WT
@ Note :
(discretized) CWT incompatible with DWT, totally different
philosophies
@ Analogy :

CWT <& Fourier integral
discretized CWT < Fourier series
DWT <« discrete FT
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WAVELET ANALYSIS OF 1-D SIGNALS
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The Continuous WT in 1-D

@ Basic formulas

S(b’ a) = <¢b,a|s>

= |a]71/2 /_O;qp <X = b) s(x) dx

a2 [ dag)s(e) e de

a#0, beR: time-scale plane R2
o Conditions on analyzing wavelet
(i) v, ¥ eL?

(ii) ¥ admissible : c, ;gﬂ/“’ Wl(g')l2

which essentially reduces to a zero mean condition

dé < oo

9(0) =0 /_Oo W(x) dx = 0
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The Continuous WT in 1-D

(iii) v and ¢ well localized : 1 € L* N L? or better
= good bandpass filtering in x and &

(iv) Vanishing moments: / x"Y(x)dx =0, n=0,1,... N
= 7 blind to ponno?niaIs of degree < N (smooth part of signal)
= better detection of singularities

(v) v progressive : 1Z real and 12(5) = 0 for £ < 0 (analytic signal)

Note : one takes often a > 0 (positive dilation factor only)

= slightly different admissibility condition :

_ * QR ° g
C¢_27T/0 d¢ ] d§—271'/oo €] dé < oo

(equality automatic if 4 real)
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Two common wavelets

Localization properties and interpretation

The Mexican hat wavelet
1 . real

_ 2 —5X
Yu(x) = (1 —x")e 2 . admissible
~ 1., 1

PR Y . not progressive

= 2
Vu(§) =& e . 2 vanishing moments n =0, 1

The Morlet wavelet
. complex

_ aiox g—x*/207
¢M(X) = et e /2 + C(X) . admissible with correction term
sz(f) =0, e [(€=¢0)a0)?/2 +2e) - correction term negligible for 0,¢, > 5.5
. not progressive

-10 0 10 -10 0 10

(left) Mexican hat or Marr wavelet;
(right) Real part of the Morlet wavelet, for &, = 5.6
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Assume
num supp ¥(x) ~ L around 0
num supp ¥(§) ~ = around &,

Then
num supp ¥p s(x) ~ alL around b
num supp ¥p () ~ =/a around &,/a

Therefore
o if a>> 1,4s,. = wide window (long duration),
Jb:, peaked around small frequency &,/ a:
= sensitive to low frequencies (rough analysis)

o if a << 1,15, = narrow window (short duration),
b, wide and centered around high frequency &,/ a:

= sensitive to high frequencies (small details)
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Localization properties and interpretation

E~1/a
A

a<l: ¢&/a+t =/a
alL

a=1 & T =
L

S T 28 S — T
alL
b X

Support properties of 1 , and Jb\,a
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Localization properties and interpretation

Il
—
w
Il
N

a
-10 10 -10 0 10 -10 0 10

Support properties of the Morlet wavelet ¥:

for a=0.5,1,2 (left to right), 15 . has width 3, 6, 12, respectively (top),
while 1 » has width 3, 1.5, 0.75, and peaks at 12, 6, 3 (bottom)

0.5 a
0
10

20 0 10 20 0 10 20
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Consequences

Mathematical properties

WT = zero mean filter (convolution) + localization properties =

o CWT = local filtering in time (b) and scale (a)
S(h,a) #0 <= pa(x) = s(x)

o CWT = mathematical microscope
optics 1, position b, magnification 1/a

o CWT works at constant relative bandwidth : A¢/€ = const

o = CWT = singularity detector and analyzer
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For ¢ admissible, the CWT W,, : s(x) — S(b, a) is a linear map, with
the following properties:

@ Covariance under translation and dilation

Wy @ s(x — %) — S(b — X0, )
1 X S b a

@ Energy conservation

° dadb
2 _ -1 2
[ searax=cit [ iswar

= |S(b, a)|> = energy density in half-plane

< W, = isometry from space of signals L?(R) onto closed
subspace H,, of L?(R2, dadb/a®) = space of transforms

= W, invertible on its range H, by adjoint map, i.e.
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Mathematical properties

@ Reconstruction formula
dadb

-1
S(X) :C,L/) //]Ri wb7a(X) S(b7 3)7
= linear superposition of wavelets 15, , with coefficients S(b, a)

e Projection Py : L?(R2, dadb/a®) — M, is an integral operator, with
kernel
K(bla a/; ba 3) - Cq;]- <1/)b',a/|wb,a>
K = autocorrelation function of 1, reproducing kernel
= f € [*(R2,dadb/a®) is the WT of a certain signal iff
it satisfies the reproduction property

() = [[ sl (b.2)

= the CWT is a highly redundant representation !

dadb
2

= Full information contained is small subset of half-plane :
o Lines of local maxima : ridges
o Discrete subset = frames
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Reducing the computational cost : Ridges

@ Real life signals often entangled and noisy, WT difficult to interpret

@ But the energy density |S(b, a)|? is usually well concentrated, around
lines of local maxima = ridges

Skeleton = set of ridges
Result : S(b, a) rskeleton contains essentially the whole information
= Exploit redundancy by reducing WT to its skeleton

@ Detecting singularities in signals : vertical ridges
Application : estimating the strength of singularities = local Holder
regularity

S(x —Xo) ~ (X —xo)* + ..., for x~x,
+ covariance property of the CWT under dilation

= along ridge, |S(b, a)| behaves as a
= slope of plot of log|S(b, a)| vs. log a gives regularity index «
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Reducing the computational cost : Ridges

Reducing the computational cost : Ridges

@ Detecting characteristic frequencies in signals : horizontal ridges

e Many signals are well approximated by a superposition of simple
spectral lines:

N
s(x) = ZAH(X) e, An(x) slowly varying amplitude
n=1

o By linearity, the WT is a sum of terms, S(b,a) =), Si(b,a)

o To first order, one gets S(b,a) ~ S | ¥(a&n)sa(b)

e Assume 12(5) has a unique maximum in frequency space at £ = &,
and frequencies &, are sufficiently far away from each other

e Then S,(b, a) is localized on the scale a, = &, /&,
= along the line of maxima a = a,, called the nth horizontal ridge,
the CWT is approximately proportional to the nth spectral line:

S(b,an) = sn(b) P(&0)
e Same reasoning for more general spectral lines (asymptotic signal)
sn(x) = An(x) ei¢”(x), An(x) slowly varying w.r. to ¢,(x)
Typical example : NMR spectra
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Wavelet analysis of a discontinuous signal with a Mexican hat wavelet

Log Scale
Log Scale

[ ]

100 200 00 400 500 600 700 80 %00 1000 100 200 30 400 500 60 700 800 900
Position Position
Wavelet transform Skeleton of the same
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Reducing the computational cost : Ridges

Analysis of a rebound signal, with a Mexican hat wavelet

Force [Volts]
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107s]

The signal and the points detected by the respective ridges
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Reducing the computational cost : Ridges

Analysis of a rebound signal, with a Morlet wavelet

Horizontal ridges
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Choice of analyzing wavelet

Applications of the 1-D CWT

For applications, one has to choose an adequate wavelet : the choice
depends on problem at hand !

@ Detection of singularities
o Phase irrelevant = real wavelet
o Need characterization of singularity strength
= derivative of Gaussian
dyn 2
P (x) = (a) e 202 :  n vanishing moments
@ n = 1: simplest case
@ n = 2: Mexican hat : erases linear trends
@ Spectral analysis
o Detection of characteristic frequencies, denoising or rephasing of
spectra,. ..
o Phase essential

@ Modulus/phase representation of CWT
o Use of instantaneous frequency

= Morlet wavelet
. 2 2
Um(x) = € e /2 4 ¢(x), ¢(x) negligible for 0&, > 5.5
@ In both cases, o controls resolution in time and in frequency = adapt

width o to signal at hand
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Noise removal in signals
removal of undesirable noise in signals by subtraction and
reconstruction

Sound and acoustics

musical synthesis, speech analysis (formant detection), disentangling
of underwater acoustic wavetrain

Geophysics

analysis of microseisms in oil prospection, gravimetry (fluctuations of
the local gravitational field), seismology, geomagnetism (fluctuations
of the Earth magnetic field), astronomy (fluctuations of the length of
the day, variations of solar activity, measured by the sunspots, etc)

Fractals, turbulence (1-D and 2-D)
diffusion limited aggregates, arborescent growth phenomena,
identification of coherent structures in developed turbulence
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Applications of the 1-D CWT

Atomic physics

analysis of harmonic generation in laser-atom interaction
Spectroscopy

NMR spectroscopy : subtraction of spectral lines, noise filtering

Medical and biological applications
analyzing or monitoring of EEG, VEP, ECG; long-range correlations
in DNA sequences

Analysis of local singularities

determination of local Holder exponents of functions

Shape characterization

robotic vision : CWT of contour of an object treated as a complex
curve in the plane

Industrial applications
monitoring of nuclear, electrical or mechanical installations ;
analysis of behavior of materials under impact
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Physical applications of CWT

Physical applications of CWT

Noise removal (filtering) in a signal

15000 (a) q

0 005 01 015 02 025 03 035 04 045 05
frequency

15000 (1) ]

S]]

@ (Top) noisy signal : original NMR spectrum

o (Bottom) denoised signal : reconstructed spectrum after noise
removal
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Physical applications of CWT

Detection of discontinuities in a signal

500 600 700 800 900 1000 1100 1200 1300 140D 1501 60 700 80 90 1000 1100 1200 1300 1400 15 600 700 800 900 1000 1100 1200 1300 1400 1500
Time [10°¢s] Time (10™4) Time (104s]

(a) (b) (c)

Fall of a striker on a plastic disk : analysis of rebound signal with a
Mexican hat wavelet

(a) Signal : rebounding striker acceleration (= force) and discontinuity
points to be detected

(b) Absolute value of the CWT of signal

(c) Corresponding skeleton
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Discretization of CWT

Suppression of unwanted (water) peak in a NMR spectrum

x10° x 10°
10 T T T T 10 T
@ (b)
8 8
~ 6 ~ 6
n n
7 7
< 4 & 4
2 1 2
0 01 02 03 04 0 01 02 03 04
frequency frequency

@ (Left) original NMR spectrum

o (Right) reconstructed spectrum after water peak removal
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o CWT must be discretized for numerical implementation

@ Choice of sampling grid: discrete lattice I' = {a;, bj «, j, k € Z}
yields good discretization if

s= Z <,(/}jkvs>{5jk

j,kezZ

with Y = vy, , 5 and ij explicitly constructible from )

o Common choice : dyadic grid a; =277, bj y = k- 27/

Ui(x) =222 x — k), j ke

@ Usually leads to frames, not bases
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The dyadic lattice

)
a=0.25

® 0 00000060000 0000000000000 3205

L] L] L] L] L] L] [ ] L[] [ ] [ ] [ ] o L] a:].
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The discrete WT (DWT)

Frames
@ Relevant concept : {¢j} is a frame in Hif 3m>0,M < oo s.t.
2 2 2
msl> < Y [wals)l> < M|
Jkez
e m, M = frame bounds
e m=M=#1: tight frame
e m=M=1and ||i|]| =1 : orthonormal basis
@ Question : given wavelet 9, find lattice I s.t. {1} is a good frame,
i.e. such that |% — 1| <1
@ Solution : lattice adapted to geometry, e.g. dyadic lattice
Result : Mexican hat and Morlet wavelets give good, nontight frames
@ — need another approach to get a basis : DWT, based on

multiresolution analysis
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e Multiresolution analysis of L2(R) = increasing sequence of closed
subspaces

...CcV,L,cViCcvpycvic W C...
with ()¢5 V; = {0} and ;. 5, V; dense in L*(R), and such that
(1) f(x) e V& f(2x) € Vi

(2) There exists a function ¢ € Vg, called a scaling function, such that
the family {¢(x — k), k € Z} is an orthonormal basis of V4.

= {ou(x) = 2/2¢(2x — k), k € Z} = orthonormal basis of V;

@ Define the spaces W, by

o V; = approximation space at resolution 2/ (at level j)

o W, = additional details 2/ to 2/ (called wavelet spaces)
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The discrete WT (DWT)

= L’R) =P W

jez

o0
=V, ® @ W; (Jo = lowest resolution level)

J=Jo

@ Main result :
3 function 1, explicitly computable from ¢, such that

{jn(x) = 2/%p(Px — k),j € Z} = orthonormal basis of W;
{j(x) = 2/2(2x — k), j, k € Z} = orthonormal basis of L?(R)
= orthonormal wavelets

@ Examples : Haar wavelets, B-splines, Daubechies wavelets

Note: B-spline wavelets of order > 1 have compact support, but are
not orthogonal to their translates. By orthogonalizing them, one
loses compactness of support.
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Construction of the mother wavelet

From V, C Vi, get two-scale or refinement equation

G(x) =V2 > hd(2x —k), e = (dklo)

k=—o00
@ Taking Fourier transforms, this gives
~ ~ 1 = .
9(2€) = h(§) ¢(§), with h(£) = 2, hyee ™%

@ = his a 2mw-periodic function and
[h(€)? +[h(E +m)> =1, h(0) =1

Iterating the two-scale equation, one gets

B(¢) = (2m) /2 H h(277¢)  (convergent!)

Then define v € Wy C Vi by
15(2{) =g(&) $(§), with g another 27-periodic function
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Construction of the mother wavelet

Spline wavelet bases

@ By V; ® W, = Vj41 and orthonormality, one gets

g(§) h(&) +e(+m)h(§+m) =0 (1)

@ Simplest solution: g(¢) = e'® h(¢ + 7), which implies

h(E)1* + g(&)) =1 (2)
(1) and (2) = Smith-Barnwell perfect reconstruction conditions
@ The two-scale equation implies
h(0) = g(r) =1, h(r) = g(0) =0,

i.e. h = low-pass filter, g = high-pass filter
@ This gives

P(x) = V2 Z (—1)**h_y_16(2x — k) = orthonormal basis

k=—o00

e Equivalent solution: ¥(x) = v2 Y ;2 (—1)¥h_k110(2x — k)
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Simplest example : the Haar basis
e scaling function : ¢(x) =1 for 0 < x < 1, and 0 otherwise
@ associated wavelet : Ypaar(X)

1, ifo<x<1/2

wHaar(X): *1, if 1/2<X< 1
0, otherwise
¢(X) wHaar(X)
A
1

Scaling function ¢(x) Wavelet Yhaar(x)

J-P. Antoine Wavelet analysis, from the line to the two-sphere 39/167

Spline wavelet bases

Starting from the Haar basis, one builds successive spline wavelet
bases of successive order, corresponding to scaling functions

P1=0x¢
On = ¢ * Pp_1
V{" = {splines of order n}

= {piecewise polynomial functions of degree n, Ctatke 7}

Spline wavelets of order 1

¢1(x) = (¢ % 9)(x) 1(x)
! 1
_ -1/2 /\ 3/2 _
-1 1
-1/2 \/
Scaling function ¢1(x) Wavelet 11 (x)
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Practical implementation of DWT

Generalization : Biorthogonal wavelet bases

@ Practical formula :
Sampled signal in V; = finite representation

J-1
V=V, GB W; |, Jo = lowest resolution

J=Jo

e Example with J =0 and j, = —6:

T T T T T

Six level decomposition of a signal on an orthonormal basis of
Daubechies d6 wavelets

J-P. Antoine

Discretized CWT vs. DWT
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@ In CWT, decomposition and reconstruction wavelets may be different
(with cross-compatibility conditions)

@ Analogue in DWT : biorthogonal bases, starting from two different
MRAs {V;}, {V;} with cross-orthogonality conditions between bases

{¢jx,k € Z} in V; and {gjn, k € Z} in V,
@ Wavelet subspaces are define~d by N s
W, C Vg and Wy LV, W, C Viy and W LV
o Choosing bases {¥jx, k € Z} in W, and {4y, k € Z} in W}, one gets

(D) = (Wuldjrwr) =0
(DiklDirr) = (Vik|jrwr) = jjr Onwr
<= four filters, two low-pass h,F, two high-pass g, g

@ This yields
e more flexibility
e better control of regularity and decay properties of wavelets
o easily adaptation to other geometries : wavelets on interval, wavelets
on manifolds
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Generalization : Wavelet packets

@ Question: CWT (discretized) or DWT?

@ Answer: Depends on the application

o CWT for feature detection (no a priori choice for a, b) : more
flexible, more robust to noise, but only frames in general

o DWT for large amount of data, data compression :

more rigid (need generalizations)

@ Generalizations

Biorthogonal wavelets
Wavelet packets

Continuous wavelet packets (integrated wavelets)
Redundant WT (on a rectangular lattice)
“Second generation” wavelets (lifting scheme)

J-P. Antoine
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bases, faster, but

Usual wavelet decomposition scheme:

@ At each step, approximation subspace V; is further decomposed into
Vioi® Wi

@ And detail subspace W; is left unchanged
= unique choice of bases

@ This is an asymmetrical subband coding scheme

@ Example of a three-level decomposition

Vo
V_y W_q
Vo, W_, W_q
Vs | W, W, W,
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Generalization : Wavelet packets

Generalization : Lifting scheme, second generation wavelets

Wavelet packet decomposition scheme:

@ At each step, both the approximation subspace V; and the detail
subspace W; are further decomposed

= large choice of orthonormal bases (“libraries”)
@ necessity of choosing one particular basis : Best basis algorithm

@ Example of wavelet packet three level decomposition, with a
particular choice

Vo

Vo, wo, wi, w2,

Vo | WO | WO | wo% [ wit | w2 | w2 | w?
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Generalization : Lifting scheme, second generation wavelets

@ Biorthogonal filters h,% through refinement equations

Pjk = E hj,k,l Pj+1,15 similarly for h = hj,k,l
1e(j+1)

@ Build wavelets in usual way
{tbj,m, m € M(j)}, where M(j) = K(j + 1)\ K())
and dual wavelets, giving biorthogonal basis

<wj7m|'$j’,m’> = 5]]’6mm/

@ Refinement equations = filters g, g

Yjm = § &.mi i+l Vjim= E &j.m,I Pj+1,0

lek(j+1) le(j+1)

= Four biorthogonal filters h, h, g, g
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Generalization : Lifting scheme, second generation wavelets

@ Goal: to build a wavelet system without recourse to Fourier
transform, suitable for irregular sampling and arbitrary manifolds

@ Observe: _
in a biorthogonal scheme, {V;} does not determine {V;} uniquely,
but freedom of choice is known explicitly (arbitrary trigonometric
polynomial)

@ Idea: start from given biorthogonal scheme (h,F,g,g), then
tranform it using that freedom into a new one (h(V), A g1 g(1),
and so on, by a succession of ‘lifting steps’

@ Starting point : weaken definition of MRA by imposing only
(3) for each j € Z, V; has a (Riesz) basis {p; «, k € K(j)}

with K(j)= general index set, such that K(j) C K(j + 1)
(no dilation invariance = irregular sampling allowed)

o Build dual scale {V;} with biorthogonal basis

(k| @jkr) = 0w, ko K € K()).
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e Operator notation: h;x; = operator H; : 2(KC(j + 1)) — 2(K(j))

b= Hja < by = Z hjk.1 i
le(j+1)

a=(a)) € B(K( +1)), b= (bi) € 2(K())

® gjmi = operator G; : (2(K(j + 1)) — £2(M()))
@ Similarly for the operators Itlj, Ej

@ Conditions for exact reconstruction
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Generalization : Lifting scheme, second generation wavelets

Bases vs. frames

Lifting scheme
@ Freedom in designing a set of filters Itlj, Ej biorthogonal to H;, G; :
arbitrary operator S; : (2(M())) — (2(K(j))
(in the simplest case, trigonometric polynomial s(&))
o A lifting step:
{H.H. 6. G}y = (H. 1.6 G}

where HY = F; + 5,G;, 6! = G; — S H;,
@ A dual lifting step:
(1 1) = 1) 7@ 1) =1
{vaHJ( )7 GJ( )7 GJ?} = {HJ( )”LIJ( )7GJ( )7 GJ( )7}

where Hj(l) =H; + ngj(l), E;j(l) =G — gj*ltlfl)

@ = can get any biorthogonal filter set after finite number of steps,
starting from the Lazy wavelet: H; = H; = E, G; = Gj = D, where

E: (K@ +1)) — £2(K(@)) and D : £2(K(j + 1)) — £2(M()))
are restriction (subsampling) operators
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SOME GENERAL CONSIDERATIONS ON BASES AND FRAMES
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@ Basis {fx}kes in Hilbert space H (not necessarily orthogonal !):
every f € H can be represented as

F=> clf)f 3)

kel
with unique coefficients ¢, (f)

o Frame {fx}kes in H : every f € H may also be written as in (3), but
the coefficients are not necessarily unique (maybe linearly
dependent) = redundancy

@ For every frame {fx}«e/, there exists a dual frame {?k}kel such that

F=> (f.f)f=Y (f.h)fi, VFEH.

kel kel
Problems : convergence? good appproximation by truncation?

@ Question: What is better: wavelet bases or frames?
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Wavelet bases and the two-scale matrix

e Foreach je€Z, Vi1 =V, W,
Choose bases ® = (¢jx )k in V;, W/ = (1jx)x in W, (row vectors)

o Any i =50 flgu € Viand g/ = 3277, gl € W can be
written as

fl=aof, g/=wg withf = (1)), g = (g,}()J column vectors

@ Since Vj_1, W,_jare subspaces of V; = V;_; @ W,_1, we may write
L =d/Pand Wl = IQ) (%)
e Given f/, 31 fi-1 ¢ Vi_i1, g le W;_1 such that

fl=flygtl — oF=0¢ 11 pylgl

gt

= M; : two-scale matrix

. . j—1
@ So, using (%), we get f/ = (P/ @) ( P )
——

@ The two-scale matrix has to be inverted for some applications :
sparse, orthogonal?
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What is desirable from a wavelet basis/frame? Desirable properties : Why orthogonality ?

olet PR)=..aWleaWasW eoW?as...
B; = {4k, k € Z} basisin W/, B= {1, j, k € Z} basis in L*(R)

e Orthogonal wavelet basis {¢)j x, j, k € Z} :

@ continuity, smoothness (if we want to approximate smooth data)
@ orthogonality W)k, jr k) = 65.jr Ok ke
@ local support
Riesz stability (f thogonal bases) One has
@ Riesz stabili or nonorthogonal bases 2
o2 Stabiity & f= (fiiutk VF e LX(R)

@ vanishing moments jkez
o for spherical wavelets: absence of distortions around pole(s) o Semi-orthogonal wavelet basis B: (1); .1 ) = ;. c(k. k')
° . . ~

@ Biorthogonal wavelet bases generated by v, 1) :

(Wj.ses jrr) = 0jjo O
o o 2
f= Z (F 000k = Z (F Y500k, VFeEL(R)
J.keZ J.kez
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Desirable properties : Why orthogonality ? Desirable properties : Why local support ?

@ In some applications (like compression, denoising) one needs to
invert the two-scale matrix M;.
Thus, orthogonality = fast algorithms

@ Local support implies that the two-scale matrix M; is sparse (crucial
for large amount of data)
. . fi-1 .
@ However, orthogonality is often difficult to achieve Recall: £ = (P /) gi-l | M; = (P Q)
(for example, on R, there is no symmetric orthogonal wavelet ¢ with o Local support prevents spread of “tails”
compact support)
Example: Using a spherical harmonics kernel, localized, but not

@ In many situations, the orthogonality requirement is relaxed to locally supported, leads to “ripples” when approximating data

semi-orthogonality or biorthogonality
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Desirable properties : Why local support ?

Desirable properties : Why vanishing moments 7

A spherical harmonics kernel in spherical coordinates and on the
sphere : localized, but not locally supported

Initial data set and its approximation at level 6
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Desirable properties : Why Riesz stability ?

@ Vanishing moments:
/X"KZ(X)dxzo, forn=0,1,...,N
R

== zz blind to polynomials of degree < N
(smooth part of the signal)

— good for detections of singularities

@ For DWT: _
F=> dithin: = (F )
.k

Important result: |d; x| is large only in the region where f is less
smooth (unlike Fourier series, where a discontinuity of f ruins the
decrease of all Fourier coefficients)
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@ Let J = countable, H Hilbert space. Then the basis {fx}xcs C H
satisfies the Riesz stability conditions if 3 A > 0, B < oo such that

A el <D akl? < BY lal® Ve={a} € P(J).
ked ked keJ
® Meaning of stability: Let g = >, difx, 8 =D, difc € H
Then the Riesz stability requirement is equivalent to the inequalities

lg — &*Il < BY?||d = "2y and [|d — d*[| oy < A™|lg — g,
where d = {dk}ke_j, d* = {d;:}ke_]

e Small perturbation on coefficients dx = the function g can be
reconstructed with small error
o Small perturbation of g = small perturbation of the coefficients di

@ Moreover, if there exists a Riesz stable basis, then there exists a
biorthogonal basis {fx}kes C H such that

() =065 and f =S (F R =S (F f)fe, VFeEH.
ked ked
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WAVELET ANALYSIS OF 2-D IMAGES
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Wavelet analysis of 2-D images

Group-theoretical justification in one dimension

@ Geometric transformations in the plane R? :

(i) translation by b € R? : X - X' = )"(' b
(ii) dilation by a factor a > 0: ax
(i) rotation by an angle 6 : X

I><1

_ < cosf —sinf
r@:

sind  cosf > , 0 < 0 < 27, rotation matrix

@ Action on finite energy signals

[U(B,2,60)s] (%) = 55, ,(R) = a7 s(a " ro(% — B))
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Wavelet analysis of 2-D images

o Dilation + translation = affine transformation of the line
y=(bja)x=ay+b, a#0, beR, xR

Composition rule : (b, a)(b’,a') = (b+ ab’, aa’)
= {(b,a)} = Gag ~ R2 = affine group

Action of (b, a) on the signal : ¢ — U(b, a)y

(b)) = a2 (X7 (+

and U = unitary irreducible representation of G,g in L2(R)

@ U is square integrable

1 admissible <= // WT/JW dbda < 00
aff

@ Note : Restricting to a > 0, one gets the connected affine group
GJl3 (or ax + b group) and (x) is a UIR of it in L2(RT)
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In two dimensions

@ Basic formulas for CWT
S(Ba au 0) = <¢E7a7€|s>
= a—l/ Y(a=1r_g(% — b)) s(%) d°%
R2

= a/]Rz eB; U(ar_g(k)) 5(K) d’k

o Admissibility of wavelet v :

(k)2
cy = (27)? / Wj(ﬂkn d’k < oo
E LG

@ Necessary condition :
D(0) =0 / W(%) d?% = 0,
R2

@ Note : all formulas almost identical in 1-D and in 2-D !
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o Dilations + translations + rotations
= similitude group of the plane : SIM(2) = R? x (R} x SO(2))

v = (b,a,0)X = ary% + b,

@ Action on finite energy signals

—

[U(b, a, 9)5] (%) =a's(a ' r_g(X — b))

and U = unitary irreducible representation of SIM(2) in L?(R?)

@ U is square integrable

. d
 admissible <= /// (B, a,0)0lw| o2B 2 d6 < oo
SIM(2) a
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Interpretation of CWT

Main properties of CWT

Interpretation of CWT : exactly as in 1-D

@ localization properties of ¢ + convolution with zero mean function
= local filtering in b, a,0

@ support properties of ¢ = analysisl/vith constant relative
bandwidth: Ak/k = const, k = |k|

= CWT = mathematical directional microscope
(optics 9, global magnification 1/a, orientation tuning parameter 6)

=  CWT = detector and analyzer of singularities
(edges, contours, corners, ...)
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Main properties of CWT

@ Reproduction property (reproducing kernel)

— = d
S(b',a,0') = c;* /// (g oo V5.09) S(b,a,0) d?b i dé
SIM(2)

@ WT is covariant under translations, dilations and rotations
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Choice of the analyzing wavelet

@ Energy conservation

—1/// 1S(B, a,0)[? a2 %2 da_/ Is(R)[? d2%
SIM(2) R?

i.e., isometry from space of signals L?(IR?) onto closed subspace of
L2(SIM(2)) = space of wavelet transforms

@ Reconstruction formula
Inversion of CWT by adjoint map :

%)=c, ///Slm s )S(ba@)dzb—de

i.e., decomposition of the signal in terms of the analyzing wavelets
Y , g With coefficients S(b, a, 0)
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(i) Isotropic wavelets

Pointwise analysis

. . . = rotation invariant wavelet
Directions irrelevant

Examples :

@ 2-D Mexican hat wavelet
Uu(X) = (2= [3]?) exp(—3I%])
(k) = |K* exp(~3|kI?)

o Difference-of-Gaussians or DOG wavelet

Uo(%) = 5 exp(—2l7P) — exp(~3[%P) (0 <a<1)
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Choice of the analyzing wavelet

Choice of the analyzing wavelet

An isotropic wavelet: The 2-D Mexican hat wavelet

in position space

in spatial frequency space
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Choice of the analyzing wavelet

@ A directional wavelet : The 2-D Morlet wavelet

in position space in spatial frequency space

@ A very directional wavelet : The Gaussian conical wavelet (in spatial
frequency space)
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Exploiting redundancy: frames and ridges in the 2-D CWT

(ii) Directional wavelets

Detection of directional features

. . o = direction sensitive wavelet
Directional filtering

Example : R
directional wavelet < num supp @ C convex cone, apex at 0

@ 2-D Morlet wavelet

Yu(X) = exp(il_{o - X) exp(—%|>‘<’\2) + corr.
Vu(k) = exp(—%|/? — ko?) + corr.
@ Conical wavelet, with support in convex cone
C(-a,a)={keR?| —a<argk <o, a </2}
3R :{ (k - &) (k- &) e 3K, ke C(~a,a)
0, otherwise
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(a) 2-D frames:
same definition as in 1-D, similar results (Mexican hat, Morlet
wavelet, ... give good, nontight frames)

(b) 2-D ridges:
Caution: several possible definitions !!

Useful choice, in terms of energy density of the CWT :
E[s](b,a) = |S(b,a)> (in isotropic case)

Ridges = lines of local maxima of E[s](b, a)
Skeleton = set of all ridges

@ More precisely, a (vertical) ridge R is a 3-D curve (7(a), a) such
that, for each scale a € R, E[s](F(a), a) is locally maximum in
space and r is a continuous function of scale

@ Asin 1-D, the restriction of the CWT to its skeleton characterizes
the signal completely.

J-P. Antoine Wavelet analysis, from the line to the two-sphere 72/167



Choice of the analyzing wavelet Applications of the 2-D CWT : Physical applications

o Characteristic features of a ridge:
o Amplitude of the ridge

Ar = lim E[s](7(a), 2)
@ Astronomy and astrophysics
structure of the Universe, cosmic microwave background (CMB)
Sk — lim dInE[s](F(a), a) radiation, feature de.tection in. images of the Sun, detection of
a—0 dlna gamma-ray sources in the Universe

o Slope of E[s] on the ridge

o Energy of the ridge

Er = /Om Els)(7(), ) %

@ Geophysics
geology: fault detection, seismology, climatology

) ) @ Fluid dynamics
@ An example of 2-D vertical ridges ‘ detection of coherent structures in turbulent fluids, measurement of
a velocity field, disentangling of an underwater acoustic wave train

A
l TM.U‘

Simulated bright points on the Sun Corresponding vertical ridges
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Applications of the 2-D CWT : Image processing Applications of the 2-D CWT : Physical applications

@ Image denoising
removal of noise in images using directional wavelets

o Contour detection, character recognition @ Fractals and the thermodynamical formalism
detection of edges, contours, corners . .. analysis of 2-D fractals by the WTMM method (diffusion limited
aggregates, arborescent growth phenomena, fractal surfaces,

@ Object detection and recognition in noisy images
automatic target recognition (ATR), application to infrared radar
imagery, using both position and scale-angle features

clouds,...) :
determination of fractal dimension, unraveling of universal laws,
shape recognition and classification of patterns

@ Image retrieval
recognition of a particular image in a large data basis,
characterization of images by particular features

@ Texture analysis
classification of textures, “Shape from texture” problem

@ Detection of symmetries in 2-D patterns
detection of discrete inflation (rotation + dilation) symmetries,
quasicrystals (mathematical and genuine), quasiperiodic point sets

@ Medical imaging
Magnetic resonance imaging (MRI), contrast enhancement,
segmentation

@ Watermarking of images
adding a robust, but invisible, signature in images (e.g. with
directional wavelets)
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Applications of the 2-D CWT : Physical applications

Noise removal in images

Reconstructed, denoised image

J-P. Antoine
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Applications of the 2-D CWT : Physical applications

Applications of the 2-D CWT : Physical applications

Contour detection

The signal

J-P. Antoine

<4
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Example of character recognition

Detecting the contour of the letter A with the radial Mexican hat:
The CWT and its coding by the signs of the respective corners
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Applications of the 2-D CWT : Physical applications

Solar physics : Disentangling bright points from cosmic hits on solar

images
Cosmics
Bright
Points
. L1

L] -' . -

BN
Top-left quadrant of a 284 A Selected cosmics (triangles)

. Slope-amplitude histogram ) . .

wavelength EIT/SoHO image and bright points (circles)

Bright points selection Cosmics selection

A closer look on a small on-disk region of the Sun
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Applications of the 2-D CWT : Physical applications

The 2-D discrete WT (DWT)

Directional filtering with a conical wavelet

Signal CWT CWT after thresholding

22 T = < - 7 ¥ - L.
- . N
. = L4 ' g N LANS - N
< e S " Re
P ) | [ \Q‘\. o N
<t S RSN MO
S ", Y ) i S SR
na 325 AL 325
- . ~_ ’ Y .
The original image,
representing bacteria Filtering at —10° The same at 45° The same at 135°
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Applications of the 2-D CWT : Physical applications

@ Choose dilation matrix D : 2 x 2 regular matrix such that
(a) DZ? C 7Z? ( < D has integer entries)

(b) Aeo(D)= |\ >1

e A multiresolution analysis of L2(R?) is an increasing sequence of
closed subspaces V; C L?(R?):

...cV,cV_;cVogCcV;CcV,C...

such that
(1) NjezVi =10}, Uiz Vi = L2(R?) (exhaustion)
(2) f(-)eV; < f(D ") € Vi1 (no privileged scale)

(3) 3¢ € L*(R?) s.t. {®(- —k), k € Z} is an orthonormal basis of Vg
(scaling function)

— {®;«(-) = | det DF/?*®(D’-—k), k € Z*} orthonormal basis of V;
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The 2-D discrete WT (DWT)

Measuring the velocity field in a turbulent fluid (with Morlet wavelet)

y

05
04
03
02 4
01 4

The dot-bar signature of tracers
in the fluid 10

20 -5 0 05 00 05 10 15 20 25 30 35

A turbulent flow around an obstacle
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Define W; : V; .1 =V; @ W,.
@ 2-D wavelets: functions in W.
@ Theorem [Meyer]: There exist g = | det D| — 1 wavelets
Way, . . 9vev;

that generate an orthonormal basis of Wy. These functions can be
constructed explicitly from the scaling function ®.

= {"V;k(-) = |det DJ/2 . »W(D/ - —k), v =1,...,q, k € Z?}
= orthonormal basis of W

{"W;k, v=1,...,q, k€ Z?, j € Z} = orthonormal basis of L*(R?)
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The 2-D discrete WT (DWT)

@ Particular case: tensor product wavelets

Take
2 0
°=(53)
Let {V}, j € Z} be a 1-D MRA in L3(R). Then the 2-D scaling
function ®(x) = ¢(x)¢(y) generates a MRA of L?(R?) and

Vin =Vin @ Vin= (Ve W) e (Ve W)
=(Via V)W e V) (Ve W)s (W, W)
IVJEBWJ

Thus W; consists of three pieces, with the following orthonormal
bases :

{510 (X)) (), (K1, ko) € Z*} o.n.b. for W; @V,
{ij,kl(X)?/Jj,kz()/), (kla k2) S Zz} o.n.b. for VJ ® VVJ'a
(). ()0 (¥), (K1, k2) € Z*} onb. for W; @ W;.
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The 2-D discrete WT (DWT)

The 2-D discrete WT (DWT)

Typical 3-level decomposition of an image

o5 |dy |

o dy

df idg 5
»-----L----:- --------- E d1V

o | df |
dlh E dld

J-P. Antoine
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= one scaling function : ®(x,y) = ¢(x)d(y)
and three wavelets :

"W(x,y) = d(x)(y)
W(x,y) = Y(x)d(y)
W(x,y) )ib(y)

I
=
X

Then
{MV;x, k= (ki, ko) € Z?, A= h,v,d} is an o.n.b. for W;

{’\Wj,ka JEZ, ke€Z? X=h,v,d}isan o.n.b. for
Djez W; = L(B?)

¢, have compact support => ® W have compact support
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EXTENDING THE CWT TO THE TWO-SPHERE
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Extending the CWT to curved manifolds

The CWT on the sphere

@ Many situations in physics yield data on non-flat manifolds:

o sphere : geophysics, cosmology (CMB), statistics, . ..

o two-sheeted hyperboloid : cosmology (an open expanding model of
the universe), optics (catadioptric image processing, where a sensor
overlooks a hyperbolic mirror)

e paraboloid : optics (catadioptric image processing)

= suitable analysis tools?

@ Possible solution: extend the continuous wavelet transform

o easy translation of the wavelet, by an isometry of the manifold, i.e.,
an element of SO(3), SO(1,2)...

o local transform, with locality controlled by a dilation (to be defined!)
e in practice, usual CWT works with discrete frames

= need discrete wavelet frames on manifold
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Wavelet transforms on the 2-sphere

@ How to define a CWT on the sphere?
Translations = rotations from SO(3)

Dilations 7 the sphere is compact !

e Can one use the existing results from 2-D (frames, directional
wavelets, etc.) ?

@ Successive approaches

o W. Freeden & U. Windheuser (1995, 1996) (via spherical harmonics)
e M. Holschneider (1996)

o S. Dahlke & P. Maass (1996)

o J-P. Antoine & P. Vandergheynst (1998)

@ The continuous wavelet transform (CWT) has many advantages :
locality controlled by a dilation (to be defined!)
easy translation of the wavelet, by a rotation from SO(3)

reasonably fast algorithms
possibility of constructing spherical frames
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The DWT on the sphere

@ Do we have suitable analysis tools for signals living on the 2-sphere?
Unit sphere : S?2 = {x € R3, ||x|| = 1}

@ Fourier transform is standard, but cumbersome : expansion in
spherical harmonics !

{Y/™(0, )} o.n. basis on L?(S?), so that, V f € L?(S?, du(w)),
flw) = D> > FllmYr(w),

IeN |m|<!

flm) = 0710 = | V) f(e)dnte)

where w = (0,0) € S, 0 € [0,7], v € [0,27), du(w) =sin0dO dy

@ Problem : global analysis, Y;” not localized at all on the sphere!
Note: there exist localized combinations (spherical harmonics
kernels, as seen before)
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MRA on L%(S?)

e A multiresolution analysis of L?(S?) is an increasing sequence of
closed subspaces {}/, j > 0}
Vcvtcy?ic... c(S?)
such that
o J VW is dense in L*(S?)
j=0
o Jindex sets K; C K41 s.t., Vj, ¥ has a Riesz basis {¢}, v € K;}.
More precisely, there exist constants 0 < A < B < oo, independent
of the level j, such that

{9

(we do not require that ¢/, = translations/dilations of the same
function ¢: too difficult for spherical wavelet frames/bases)

o Define the wavelet spaces W/ as W/ = V/*1 5 VJ and then
construct a basis in each W

A2 <|Xdd|  <s2d|{d}

b(K5)  lver ) R(K))
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The DWT on the sphere

The DWT on the sphere

Main approaches in literature
@ Via spherical harmonics kernels :
e D. Potts, G. Steidl, M. Tasche (1996) spherical frames

no distortion (no pole has a privileged role), preserves smoothness,
but frame is not locally supported

F. Narcowich & J.D. Ward (1996)

o W. Freeden & U. Windheuser (1997)

T. Biilow (2002) : diffusion, heat equation on the sphere
o W. Freeden & M. Schreiner (1997, 2006)

wavelets locally supported, but they are defined as infinite
convolutions of kernels of spherical harmonics

o W. Freeden & M. Schreiner (2007)
wavelets are locally supported, but the MRA is truncated at j = N

{oycVycyic...cVV v c i3S
o H. Mhaskar, J. Prestin (2006) (spherical) polynomial frames
e Via polar coordinates (6, ¢) € [0, 7] x [0,27] — S?
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An example of spherical harmonics kernel : Potts, Steidl & Tasche (1996)

o Via radial projection from a convex polyhedron I 4+ weighted scalar

product on S?: D. Rosca (2005, 2006, 2007)
In this way one gets

o Piecewise constant wavelets on spherical triangulations

o Piecewise linear wavelets on triangulations of R? ~» Piecewise

rational semi-orthogonal wavelets on S: continuous

o I = cube + wavelets on an interval ~» Haar wavelets on S?
Properties : Riesz stability, local support (= sparse matrices), no
distortion around the poles, easy implementation, possible extension to
sphere-like surfaces (closed surfaces), but no smoothness

@ Other methods : direct calculations on the sphere, S> MRA on
spherical meshes, using lifting scheme (P. Schroder et W. Sweldens,
1995)

@ Important observation : no construction mentioned so far yields
simultaneously continuity & local support & orthogonality of the
wavelet bases (OK for every choice of 2 conditions + no distortions
around poles)

o DWT on the sphere via stereographic projection:

J-P. Antoine & D. Rosca (2007)
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The CWT on the 2-sphere: heuristics

For localization : kernels of spherical harmonics, localized, but not locally
supported!

e Analogy in 1-D: Dirichlet kernel : Dy(x) = 2i Z e™
™

0,400

rrrrrrrrrrrrr

!
. 1 m

in polar coordinates on the sphere
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@ Origin of the spherical CWT : affine transformations on S?
e motion = rotation ¢ € SO(3)

o dilation by scale factor a € R} : how to define it?

@ Possible solution : stereographic dilation on S?

N
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The CWT on the 2-sphere: heuristics

Construction of the spherical CWT : The group-theoretical method

@ Realization by unitary operators in L2(S?, dpu) :
. rotation R, : (R,f)(w) = f(o'w), 0 €SO(3)
. dilation D, : (D,f)(w) = Ma,0)"*f(wi,), a€R}

where
o ws=(0sp), a>0
o 0, is defined by tan % = atan g
o the normalization factor (cocycle, Radon-Nikodym derivative) is

needed for compensating the noninvariance of the measure dy under

dilation :
43°

[(a2 — 1) cosO + (a2 + 1)]?

Aa,0) =
e o may be factorized into 3 rotations (Euler angles):

R, =R, Ry Ry, ¢,v€l0,2m), 6 €[0,7]
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Construction of the spherical CWT : The group-theoretical method

@ Action of Lorentz group :
e Stability subgroup of the North Pole : P =S0,(2)-A- N (minimal
parabolic subgroup)
= §? ~ S0,(3,1)/P ~ SO(3)/SO(2)
= S0,(3,1) acts transitively on S?

o explicit computation (with lwasawa decomposition) :
pure dilation = boost in z-direction = stereographic dilation !

e Natural UIR of Lorentz group SO, (3,1) in Hilbert space L?(S?, du):
[U(g)f](w) = A(g,w)/?f (g7 w) , g € 500(3,1), f € L*(S?, dp),
where A\(g,w) = Radon-Nikodym derivative

@ Parameter space of spherical wavelets :
X =S50,(3,1)/N ~SO(3) - R}
= introduce section o : X =S0,(3,1)/N — SO,(3,1)

and consider reduced representation U(o (g, a))

e Natural (lwasawa) section : o(p,a) = pa, o0 € SO(3), a € A.
= U(o(p,a)) = U(va) = U(p)U(a) = R, D, as before !
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The group-theoretical method : Result # 1

General (coherent states) formalism: group of affine transformations on S2 ?
o Note :
e motions o € SO(3) and dilations by a € R do not commute

o 7 semidirect product of SO(3) and RI = the only extension of
SO(3) by R is their direct product

e way out : embed the two factors into the Lorentz group SO,(3,1),
by the Iwasawa decomposition:
S0,(3,1) =SO(3)-A- N,
where A ~ SO,(1,1) ~ R ~ R} (boosts in the z-direction) and
N~C

o Justification : the Lorentz group SO,(3,1) is the conformal group
both of the sphere S? and of the tangent plane R?
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@ The UIR is square integrable on X, that is, there exists nonzero
(admissible) vectors ¢ € L2(S?, dy) such that

d
[ 1tote. )il 5 do = (6lAu0) < o, Vo € (. du).

where dp = left Haar measure on SO(3)

@ Resolution operator Ay is diagonal in Fourier space (Fourier

multiplier):
Aypf(l,m) = Gy (1)f(l,m)
where
872 o~ 5 da
Gy (1) = 1 > /0 [¥all,m)l" 5, VIEN,

N

and @a(/7 m) = (Y"|1,) is the Fourier coefficient of 1, = D,
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The group-theoretical method : Result # 2

Example of admissible spherical wavelet

e Admissible wavelet = function ¢ € L?(S?, dyu) for which 3¢ >0
such that
Gw(/) <c, VIEN,

< the resolution operator Ay, is bounded and invertible

o Weak admissibility condition on :

Y0, ¢)

s 1+ cos @ d,u(@, 90) =0 + regularity conditions

similar to the “zero mean” condition of ¢ on the line/plane.

= the spherical CWT acts as a local filter, as in the flat case !
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The group-theoretical method : Result # 3

Difference of Gaussians spherical wavelet (SDOG)
U0, 0) = 6(0.9) — £[Dad](8.¢). a>0

where ¢(0, ) = exp(— tan?(3))

original (a = 0.125) rotated rotated and scaled (a = 0.0625)

The spherical DOG 4{*) wavelet, for v = 1.25.
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The Spherical CWT

@ For any admissible 9 such that foh (0, p) dp £ 0, the family
{ta,0 = R, D2, (0,a) € X} is a continuous frame, that is,
Im > 0 and M < oo such that

d
Ml < [ Waalé) 55 do < Mo, Vo € (2. dp).

< dd>0suchthatd < Gy(l)<c, V/IeN
& Ay and Aj' both bounded

o Note :
e true for any axisymmetric (zonal) wavelet
o frame probably not tight !
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@ The Spherical CWT

Wi(o,a) = (Ya,lf) = /S2 [RoDat](w) f(w) dpa(w)

1) admissible wavelet, f € L2(S?)

@ Reconstruction formula

For f € L?(S?), v an admissible wavelet such that fozﬂ dp (0, 0) #0,

_ da
Flw) = / Wr(0,3) [A7*R, D0 (w) 2 do
R* JSO(3) a

@ Plancherel relation

IFIP? = / / Wr(.2) Wr(0.2) 22 do
R JSO(3) a

Wi(0,3) = (.alf) = (A} R, Dah| )

with
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The Spherical CWT: the axisymmetric case

o General rotation : ¢ = (¢, 0, a) € SO(3), Euler angles
e g axisymmetric = R,g = Ry,g, where [w] = o(¢,0,0)

.". g localized around North Pole = Ry,,g localized around w = (0, ¢)

@ Thus CWT redefined on S? x R% by a spherical correlation

We(w3) = (o F)(w) = [ REIoa@) (') du)
S
@ New reconstruction formula

d
)= [ Wi ) (A7 RuDatl(e) 5 due)
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An academic example

A real life example: analysis of the Milky Way

Original data: Hipparcos and Tycho Stars Catalogues

|

Wi (w, 0.08) Wi (w,0.04) Wi (w,0.02)
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Another example: spherical map of Europe

a=05 a=20.2 a=20.1 a=0.035

Wavelet transform at a = 0.016 Wavelet transform at a = 0.0082

Note: WT at finest resolution has same artifacts as the original picture: closed
strait of Gibraltar, unresolved complex Corsica—Sardinia, ragged coastlines, etc.
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The Euclidean limit

Construction of the spherical CWT : The geometrical or conformal method

e Wanted: CWT on S? tends locally to CWT on tangent plane

@ Technique : group contraction along z-axis, with sphere radius as
parameter (R — 00)

For the groups

SO(3) — R?xS0(2)
S0,(3,1) =SO(3)-A-N — R2xSIM(2)

For the group actions

Replace sphere S? by sphere S% of radius R, then:

action of o(X) C SO,(3,1) on S3 — action of SIM(2) on R?

For the representations

Define a family of representations Ug on L*(S%, dwg) (dwg = R?dw)

Ur(v:a) = U(o(v; a/R))
Then Ug — U as R — oo (strong limit on a dense set)
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The Euclidean limit

The geometrical or conformal method

o Group-theoretical method yields only asymptotic connection with
plane CWT (Euclidean limit : R — o0)

e There is a direct connection through inverse stereographic projection

e ...and it is uniquely specified by geometrical considerations !

= it is possible to obtain uniquely the same spherical CWT from the
plane (Euclidean) one, simply by lifting everything from the tangent
plane to the sphere by inverse stereographic projection:

o Wavelets
e Admissibility conditions

e Directionality or steerability properties
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Construction of the spherical CWT : The geometrical or conformal method

@ For the CWT on §?
Let ¢(X) € L2(R?,d?R) and ygr = 7 1), where
7R : L2(S%, dwg) — L2(R?, d°%)
is the unitary map induced by the stereographic projection. Then

oo ~ d2k
Col e (vien) =5 e [ R I <

Thus admissible vectors on S? correspond to admissible vectors on
R?, i.e., the Euclidean limit holds : for 1) = limg_oc TRYR,

.. 2 ’I/JR(UJ) _
1r admissible on Sz = ” T+ cosd dwg =0
U U

¢ admissible on R? = / Y(R) d’% =0

Example:
SDOG wavelet on S5 = DOG wavelet on R?
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@ Uniqueness of the stereographic projection
o Let p:S? — R? be a radial diffeomorphism from the 2-sphere to the
tangent plane at the North Pole:

p(0,¢) = (r(0),¢) with inverse p_l(r, ©) =(0(r), )

o Assume that p is a conformal map, i.e., it preserves angles, or the
metric g’ induced by p on R? is conformally equivalent to the
Euclidean metric g:

g:’,—(r,tp) = ed)(r)gij(r?@)v ¢(r) >0
e Then r(6) = 2tan , i.e., p is the stereographic projection

@ Uniqueness of the stereographic dilation
o Let D, be a radial dilation on the sphere S? :

Ds(6, ¢) = (6a(6), ¢)

Assume D, is a conformal diffeomorphism

e Then one has uniquely :

tan(%) = atan(g), i.e., D, is the stereographic dilation
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Construction of the spherical CWT : The geometrical or conformal method

Analysis of the same triangle with the spherical Morlet wavelet (v = 1.25)

Thus one obtains an equivalence principle between the two wavelet
formalisms :

o Let 7: L%(S? dw) — L?(R?, d?X) be the unitary map induced by the
stereographic projection :

1

[TF](%) = TR F(p~'(%)), F € L*(S? dw)
with inverse
[0 9) = 1oy F(0(0.9)), F € (R, o)

@ Then every admissible Euclidean wavelet ¢ € L2(R?, d?X) yields an
admissible spherical wavelet 7= € L2(S?, dw)

e In particular, if v is a directional wavelet, so is 714
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Example : The spherical Morlet wavelet (real part)

x=0° x = 90°
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Wavelet frames on the 2-sphere

a=0.03

P

B

a = 0.03, center at (;r/3, /3) The same, rotated by /2

J-P. Antoine Wavelet analysis, from the line to the two-sphere 114/167

Different notions of frame (equivalent mathematically, not
numerically!)

o Classical frame {¢,} € $:

mllfI* < > KealH)F <MFIP Ve

nel

@ Controlled frame :

m [ <Y @alf) (I Cn) < M|FIP VFeDH

nel
where C € GL($)) : bounded, bounded inverse
o Weighted frame :

m[fIP < Y wal (@l )P < M[If|? VFeh
nel

w, > 0 : weights (diagonalize C!)
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Half-continuous spherical frames Half-continuous spherical frames

Approach # 2 : controlled frame

Approach # 1 : weighted frame o Want :

@ 1) = axisymmetric wavelet (throughout) m||f|? < Z VJ_/ Wf(w,aj)Wf(w,aj) du(w) < M|f|2

e Half-continuous grid A = {(w, ;) : w € S?,j € Z,a; > aj;1} jez /S

o Want : T -1
We(o,a) = <A¢ RgDa1/}|f>

m|f]* < Z Vj /S2 |Wf(w,aj)|2 du(w) < MI|f|P o Sufficient condition :
Jj€z
b ~
< Gy(N7! [0a,(1,0)]> <M
& {thu,5; = RjDath : (w, aj) € A} = half-continuous frame in L*(S?) 2/+1 v(0) Z i 142, (1,0)]

JE€z

o Sufficient condition - Example : Same SDOG wavelet as in approach # 1

Result :
4 =N K m M M/m
< > vi[ea(1L0)? < M 1 [0.7313 [ 0.7628 | 1.0431
2/ +1 Jrenn
jez 2 | 0.8747 | 0.8766 | 1.0021
3 | 0.9242 | 0.9254 | 1.0014
4 | 0.9503 | 0.9512 | 1.0009
.. ratio M/m — 1 : a tight frame might be obtained
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Half-continuous spherical frames Half-continuous spherical frames
Example:
@ SDOG wavelet (o = 1.25), Construction of a tight half-continuous frame
o discretized dyadic scale with K voices a; = ap 27I/IK  je
o weights adapted to natural measure a~3da : Assume 1 is an axisymmetric wavelet such that
aj — a; 1/K
j — dj+1 —2 (2K _3 4 ~
vV, = —— = 3. ey vy 2
{ 313 J (%577) gw(l):mz%- [Va,(1,0)|" #0, VI €N
. . . JEL
o frame bounds m, M estimated from minimum and maximum of
quantity Then
_ #
47 -~ ) Flw) = Y vy [We( )« 95 1(w)
S(1) = T > " jlib,(1,0)]? over I € [0,31] and for K € [1,4] =
JEZL
Result where
° :
K] m M M/m o YF =A,'D,1p
1 | 05281 | 0.9658 | 1.8288 ’ _ , — )
2 | 0.6817 | 1.1203 | 1.8107 e Ay = resolution operator defined by /111 h(/, m) =8y (/)h(/7 m)
3 | 0.6537 | 1.1836 | 1.8107 o . _
4 | 0.6722 | 1.2171 | 1.8107 (discretization of continuous resolution operator Ay)

= tight frame controlled by A7!
*. ratio M/m — 1.8107 : nontight frame ! v

@ Reason : resolution operator Ay not taken into account
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Discrete spherical frames

Discrete spherical frames

@ Discretization of scales : as before
aGA:{ajeRi:aj>aj+1,j€Z}
@ Discretization of positions : equi-angular grid G;, j € Z

. 2p+1)m s
Gj = {wjpg = (Ojp, pjq) € $? Ojp = ( Ithj) » Pig = %j}

p,geN;:={neN:n<2B;j}, BieN,jeZ,B B
e {0} = pseudo-spectral grid, with nodes on the zeros of a
Chebyshev polynomial of order 2B;

= (exact) quadrature rule (Driscoll-Healy)

L F@)dne) = 2w e

P,qEN;

for certain weights wj, > 0 and for every band-limited function
f € L*(S?) of bandwidth B; (i.e., f(/,m) =0 for all | > B;)
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Discrete spherical frames

with the infinite matrix (X ); ren given by

X =3 (11 s, o) (I + 1), (1,0) [4, (1, 0))

JEN

Nl

and (1, ') = 22 G 1 (N[(2(1 + By) + 1) (2 + B}) +1)]
Let Ko = infjen S'(/) and Ky = sup,cy S'(/). If one has
0<6<K0<K1<OO7

then the family {4, = Ry, 1D5% 1 j € Z, p,q € Nj} is a weighted
spherical frame controlled by the operator A;l (i-e., (**) holds),
with frames bounds Ky — 9, Ky + 6.

Note :

o || X|| difficult to compute (infinite dimensional matrix)
o f € L*(S?) band-limited of bandwidth b € N°
= X is b X b-dimensional
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Discrete spherical frames

= complete space of discretization :

/\(A7 B) = {(aj7wqu) J € Za p7 q € M}

o Want : weighted frame controlled by A;l
m [|f]* < Z Z viwip We(Wijpq, 3j) We(wjpg, ;) < M|f[?
JEZ p,qEN;

o Sufficient condition : Let

SN = Y 5 () Gy (1) s, (1,0)2,

JEZ

6§ = |X[= sup TAT
(Hi)ien
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(+)

Result :

o spherical DOG wavelet frame
o b = 64, dyadically discretized scale with K = a3, =1
e bandwidth associated to grid size at resolution j :
B = Bo2!, By € N, where By is the minimal bandwidth associated

to 1.
Then one gets
Ko K1 é m=Kyg—90 | M=K+ M/m
By =2 | 0.6807 | 0.7700 | 84.1502 — — —
By =4 | 0.7402 | 0.7790 | 0.0594 0.6808 0.8384 1.2314
By =8 | 0.7402 | 0.7790 | 0.0014 0.7388 0.7804 1.0564
Conclusion :

e sufficient condition 0 < 0 < Ky < K1 < oo satisfied for By > 4

e but a tight frame cannot be obtained by increasing By

e for By — oo, spherical grids get finer and finer = half-continuous
frame with one voice discretization of scale : not sufficient to get a
tight frame !
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Example #1 : Local enhancement of Jupiter's Red Spot

@ Tools :

. SpharmonicKit (Rockmore et al.)
. MATLAB® YAWtb toolbox (UCL)

@ Half-continuous spherical frame with SDOG wavelet, data bandwith
b = 256, equi-angular grid of size 512 x 512

= good discretization for |j| < 7 and ag =1

@ Technique :

o Before reconstruction, coefficients at the finest scale W (w, a7) are
multiplied by a Gaussian mask M(w) = 1+ ny [Rj.D~ G](w)
localized on the center w’ of the Spot, with ||M||co=2

e Mask increases their amplitudes by < 2 in vicinity of Red Spot

o The rest of the coefficients are not modified

Impossible to do with a purely frequential spherical decomposition !
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Example #1 : Local enhancement of Jupiter's Red Spot

Example #2 : Map of the Earth

Result :

Local mask

Zoom over the Red Spot Zoom over the Red Spot with sharper details
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@ Original data f : World map, recorded on a equi-angular grid of
512 %512 points

@ Reconstruction (|j| < 6) with half-continuous spherical frame and
SDOG wavelet, as before : relative error = 1.1%

@ Combination of reconstruction with conjugate gradient algorithm
(3 iterations) : relative error = 107° %
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Example #2 : Map of the Earth

Result : SDOG coefficients Wj[p, q] = Wj(wjpq)

L)

World map Wolp, q] Walp, q]
(green ~ 1, blue ~ 0)

Je—
y e 0‘\
- L)Y

;(i" ..?‘

A
Vs

Walp, q] Difference between original data and
reconstruction (scale 107°)
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The spherical CWT via stereographic projection

@ Advantages:
e easy to implement, if wavelet 1) is given explicitly
o large freedom in choosing the mother wavelet ¢
o allows use of directional wavelets

e smoothness

o Disadvantages:
e frames, not bases = redundancy = higher computing cost, not
suitable for large amount of data
o frames are applicable to band-limited functions only

e problem of finding an appropriate discretization grid which leads to
good frames

e an explicit mother wavelet i) cannot be continuous, locally supported
and orthogonal at the same time
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Orthogonal wavelet bases on the 2-sphere

Orthogonal wavelet bases on the 2-sphere

Idea : exploit unitary map 7! : L2(R?, d?X) — L?(S?, dw) to lift
orthogonal wavelet bases from the tangent plane to the sphere

@ Pointed sphere :

§2 = {(m.m2.m) €R®, i + 03 + (3 — 1) = 1} {(0,0,2)}

Parametrization:

71 = cos @ sin 6
72 = sinsin 6, 6 € (0,7],¢ € [0,27)
73 =1+ cosf

e p:S? 5 R2: stereographic projection from North Pole N(0,0,2)
onto tangent plane at South Pole

o Area elements of R? and S? : dX = v(n)2du(n), with v: 2 - R
defined as

v(n) = — :

:2—773 1 cosh

, M= (77177723773) = (0)90) € S2

Note : L2(S?) := L3(S?, du(n)) = L3(S?), since u({N}) =0
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o The stereographic projection induces a map 7 : L2(§?) — L[%(R?)
with inverse 771 : [?(R?) — L2(S?) :

[x = F)(n) = v(m)F(p(n)), for all F € L*(R?)

@ 7 is a unitary map :

to each F € [2(R?), associate the function F* = v - (F op) € L3(S?)
Then
(FIG) 22y = (F°|G®) o2y, VF, G € L*(R?).

o Consequences:

o MRA /wavelet bases of L2(R?) ~» MRA /wavelet bases of L%(S?)
o orthogonal bases of L?(R?) ~» orthogonal bases of L*(S?)

e More precisely:

F, G orthogonal in L2(R?) = F*, G* orthogonal in L*(S?)
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Lifting everything to the sphere S?

Choose a multiresolution analysis of L?(R?)

...CV_,CcV_;CcVoCcV;CV,C...

Then define F € [2(R?) +—— FS=v-(Fop) e L%(S?)

@ In particular,
Fow=v-(Fixop), forj€Z, keZ?
e Taking F=® and F =V,
ik = v (Pjkop)
ik = v-(Vjkop)

For j € Z, we define V; as

Vi={v-(Fop), FeV;}
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Lifting everything to the sphere S?

Example : Function with discontinuous second derivative

Then
(1) W c W+l for j € Z and W/ closed subspaces of L?(S?)

(2) Mz =1{0}, Uiz V/ = LX)
(3) {®ok, k € Z*} = ONB of VO = {5, k € Z*} = ONB of V°
A sequence (W¥)jcz of subspaces of L2(S$?) satisfying (1), (2), (3)
constitutes a multiresolution analysis of L2(S?)

o Define the wavelet spaces W/ = Vitl o Vi

o If {W;,, | € J} is a basis (resp. ONB) of W/, then

{V:,, I € J} = basis (resp. ONB) of wi
{W3,, I €J, j€Z} = basis (resp. ONB) of @;cz W/ = L*(S?)
(here J = {(k,\) - k € Z2, A = h, v, d})
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Orthogonal wavelet bases on the 2-sphere

o Take the following axisymmetric (or zonal) function on S2:

1, 0 <
(8. ) = { (1+3cos?0) 12, ¢ >

ISIERNIE

0ss
0s
| 085
‘08
1 -~ ons
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06

0 S — - e
e e
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@ This function and its gradient are continuous, but the second partial
derivative with respect to ¢ has a discontinuity on the equator 6 = 7
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Example : Function with discontinuous second derivative

Conclusion:
@ ® has compact support in R* = &2, has local support on S

( diam supp @2, =% )

@ orthonormal 2-D wavelet basis
= orthonormal spherical wavelet basis

@ smooth 2-D wavelets = smooth spherical wavelets

@ In particular:
Daubechies wavelets = locally supported & orthonormal wavelets on S?

@ decomposition & reconstruction matrices: the same tools as in plane
2-D case can be used (3 toolboxes)
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@ Detecting properly such a discontinuity requires a wavelet with two
vanishing moments at least :

none of the methods described above would do in practice !
@ Discretized CWT :

e The spherical DOG wavelet does not detect the discontinuity : not
enough vanishing moments

o Analysis with the spherical wavelet W}, associated to the planar
wavelet, with vanishing moments up to order 3 :

Wi (R) = A2e 2177

= (%" - 8|%I” + 8)e 21"

@ Then analysis with db3 lifted onto S? as above
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Example : Function with discontinuous second derivative

Analysis of the function f(6, ) by the discretized CWT method with the
wavelet Wi,

-4

x 10 x10°

a=0.012
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Example : Function with discontinuous second derivative

Example : Function with discontinuous second derivative

@ So, the detection performance improves when going down the scales
(‘zooming in’) ...

@ ...but there is a limit : when a becomes too small, the method fails

(the wavelet becomes too small and ‘falls in between’ the
discretization points)

@ The same at scale 0.0085 :

s
X 10
16
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@ On the contrary, a Daubechies wavelet db3 lifted on the sphere does
the job better than the wavelet Wy, :

xall)'“ x 10
15
2
g 1
15
o -05
1
o [}

@ The detection is much more precise, with less artefacts on the sides
of the discontinuity : this is a consequence of the local support of
the db3 wavelet, as opposed to the Gaussian tail of Wy,

@ Conclusion : a locally supported orthonormal wavelet basis may be
lifted onto the sphere and it is more efficient for detecting a
singularity than the discretized spherical CWT
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DWT via stereographic projection

e Further advantage:

e One can use all 2-D constructions, like ridgelets, curvelets, and so on

o Disadvantages:

o One must avoid a region around a point (the North Pole N)

o Deformations of the grid around N

@ Possible generalization

e The method works for any manifold with an orthogonal projection
onto a fixed plane, that induces a unitary map between the
respective L2 spaces :

@ Upper sheet of two-sheeted hyperboloid with vertical projection onto
plane z =0

@ Same for paraboloid

o Possible generalization to local analysis, e.g. on one hemisphere
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THE CWT ON OTHER MANIFOLDS
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The CWT on curved manifolds

The CWT on other conic sections

@ The two-sheeted hyperboloid : manifold dual to the sphere, constant
negative curvature
o Motions are OK : isometry group = SO,(2,1)
o Dilations are problematic : large stereographic dilations map upper
sheet onto lower sheet ; several other methods available (projection
onto tangent cone, onto equatorial plane, ...)

e But CWT can be derived using appropriate integral transform
(Fourier-Helgason) that leads to convolution theorems

@ The paraboloid : singular case! No large isometry group, possible
time-frequency-like transform, not really a wavelet transform

@ General conic sections : unified CWT for all 3 conic sections, using
differential-geometric methods, promising approach, not yet
complete
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@ Apollonius : the (normalized) conic sections are
o the sphere S?
o the paraboloid P?
o the two-sheeted hyperboloid H?

@ All three are obtained as sections by a hyperplane of a double
null-cone

CS’ = {(x0, X1, X2, X3) € R*: X02 —x? — x2 fx32 =0}

@ All conic sections may be obtained by varying the tilt angle « of the
hyperplane intersecting the null-cone C3, i.e., writing the equation of
the plane as xp = 1+ tana(x3 — 2), a € [0, 7/2]

In this way we get
o S?for a=0
o ellipsoids for a € (0,7/4)
e a paraboloid for a = 7 /4
o hyperboloids for a € (7/4,7/2].
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The CWT on the two-sheeted hyperboloid

[ I. Bogdanova (PhD thesis, 2005), P. Vandergheynst (EPFL) ]

@ The two-sheeted hyperboloid H? is the dual manifold of the sphere
S?, with constant negative curvature and equation

2 2 2 _
Xg—Xxg —X3 =1

o Parameterization of the upper sheet H3 (xo > 1) is given by
X = (X07X17X2) = X(X7 90)1 where

Xp = coshy
x3 = sinhycosy,
Xp = sinhysing

(x=0,0< p<2m)
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The CWT on the two-sheeted hyperboloid H?

Choice of hyperbolic dilation

Affine transformations on ]H[i

@ Motions on H?‘_

(i) rotations : x(x, ) — x(x, ¥ + o)
(ii) hyperbolic motions : x(x, ¢) — x(x + X0, ¢)

Together they constitute the isometry group SO,(2,1)

@ Dilations 77

Requirement : Dilation = homeomorphism d, : H2 — H2 such that
e d, monotonically dilates the azimuthal distance between two points
o {d.,a > 0} is homomorphic to Ry : d.dp = dap,d,—1 =d; %, dy =/
Many possibilities !
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Choice of hyperbolic dilation

Under stereographic projection :

o Upper sheet Hi < interior of unit disk

o Lower sheet H2 < exterior of unit disk

J-P. Antoine

Choice of hyperbolic dilation
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(1) Dilation through stereographic projection

As for S?, one has a “pseudo-lwasawa” decomposition:
SO0,(3,1) =S0,(2,1) -R - N,

where R ~ SO,(1,1) ~ boosts in the z-direction and N ~ C By the
same technique, one gets

h&:atanhK

t
an2 5

Problems :

e Since |tanh x| < 1, there is a critical value xo such that all points
(X0, ) will be sent to infinity by a finite dilation a, = (tanh x,/2)*

o Moreover, for a > a,, the dilation maps the upper sheet H3 of the
hyperboloid onto the lower sheet H? |
Unacceptable for setting up a CWT !

o Also, there is no obvious representation of SO,(3,1) in L*(H2)

J-P. Antoine Wavelet analysis, from the line to the two-sphere 146/167

(2) Dilation through conic projection

Idea : project the upper sheet of the hyperboloid Hi onto its

tangent half null-cone 2
2
Ci = {(x0,x1, %) € R3:

with radial dilation x — ax

2 2 2
xg —xi —x; =0, xo =0},

Conic projection : ® : H3 — C2, given by

®(x) = 2sinh %

= dilation given by sinh % = asinh%

X0

X, X,

J-P. Antoine
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Choice of hyperbolic dilation

(3) Dilation through conic projection and “flattening”
Idea : project the cone Ci onto the plane xp =0

o Conic projection + “flattening” : mo® : H2 — C, given by
m®(x) =sinhx e, x = x(x, )

—> dilation given by  sinh x, = asinhx

Xo |—ﬁ
|
/,
N p
10
1
T
P X1
C
%
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Choice of hyperbolic dilation

The Fourier-Helgason transform

@ Generalization : one-parameter family of possible projections
1 . ;
mo®(x) = —sinhpx e, x=x(x,¢)
p

— dilation given by  sinh py, = asinh px
o p= % : dilation by conic projection
e p =1 dilation by conic projection and flattening

@ CWT on the hyperboloid

Idea : Exploit the existence of an appropriate integral transform on
L2(H?2), the Fourier-Helgason transform, that defines harmonic
analysis on H?, including convolution theorems
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@ The FH-transform :

R0 = [ A0 07H du(. vF e GRER)
where :
o 11 = SO,(2,1)-invariant measure on H2
o Uv>0,6€EPC, ={6€C2:A=EX1>0,6 >0}
(projective forward cone)
o (x- 5)_%_i”: hyperbolic plane wave
= eigenfunction of Laplacian over H2
o FH-transform extends to isometry of L?(H2 , du) onto L*(L, dn)

@ Hyperbolic convolution : for f € [?(H?2) and s € L*(H2)

(Fes)) = [ A1) s(odnt). v € B
+
where one uses a section [-] : H2 — SO,(2,1)
@ Convolution theorem :
let f,s € L?(H?) with s rotation invariant. Then s f € [}(H?) and

(5% F)(v.€) = F(r, O)3(v)
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The hyperbolic CWT

e Hyperbolic CWT : looks exactly the same as its spherical
counterpart:

Wiang) = Waglf) = | Gal@ 0 F() du(x).

where
o 1= S0,(2,1)-invariant measure on Hi
e g €50,(2,1),a>0
o 1.(x) = M(a, x)¥(dy/.x), with d; an appropriate dilation and

A(a, x) = normalization factor (Radon-Nikodym derivative) for
compensating the noninvariance of the measure du under dilation

o If the wavelet ¢ is axisymmetric, the HCWT is a convolution :

We(a, g) = Wr(a, [x]) = (a = f)(x)

= reconstruction formula, as in the spherical case
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The hyperbolic CWT

@ Admissibility condition
o ¢ € L'(H2), axisymmetric
e « positive function on R

e 1 constants m, M such that

0<m< Ay(v) = /oo |@:(y)|2a(a)da <M< oo
0

@ Then the resolution operator Ay defined by
A = [ [ Wila0uag(x)axaa)da
m2 Jo

is bounded with bounded inverse

@ The resolution operator Ay is diagonal in Fourier—Helgason space
(Fourier-Helgason multiplier):

Apf(v,€) = Ay (0)F (1,€)
.. The family {¥, 4,2 > 0,x € Hi} is a continuous frame
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The hyperbolic CWT

The hyperbolic CWT

@ Reconstruction formula (in strong sense in L?(H? ))

f(x’):/o . Wf(a,x)qulwa’[X](x')a(a)dadx

@ Choice of function « is arbitrary, up to admissibility
Example :

2
a(a) ~a=P,3 >0, for large a = 1) is p-admissible if 3 > - +1

@ Typical hyperbolic wavelet : hyperbolic DOG at scale a :

1 1. 1 1
fo(x,0) = S exp | = ?smh2(5)} — e [f @smhz(g)}

(dilation via conic projection)
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Action of hyperbolic translation on hyperbolic DOG at scale a = 0.3 and
position ¢ =

x = 0.75 x =125 X =2.75
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The paraboloid P?

e Paraboloid P? = {x € R3: xg = x? + x?}
o P? is a singular limit case (o = w/4) between

o the sphere S? (o = 0) and ellipsoids (0 < o < 7/4)
o the two-sheeted hyperboloids (o > 7/4)

o Missing ingredient : P? has no large isometry group

o P? does not have a constant curvature

— general method does not work, designing a CWT on P? is hard!
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CWT on the paraboloid P?: Suggestions

Suggestions

(1) Consider the related manifold : ¢ = P2\ {0, 0,0}, paraboloid with
apex removed

o The set P of 3 x 3 matrices of the form g = diag(a?, ars), whith
a >0, rp €S0(2), leaves both P? and % invariant !

o Embed P into the group

G:{g(b,a,@)z(i g; ):a>0,b€R2,0<6<27r}

G = nonunimodular Lie group, similar to, but different from SIM(2)
® Then P ~ G/H ~ 3, where H = {g(b,2,0): a=1,0 = 0}
o P has a natural action on %
o There is a P-invariant measure on 3

@ G has a unique UIR U in L?(*B, dug) and it is square integrable
Corresponding ‘“coherent states” :

Vbap = (cp) Y2 U(b,a,0)y, (b,a,0)eG

@ The corresponding time-frequency transform looks more like a Gabor
transform than a wavelet transform !
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CWT on the paraboloid P?: Suggestions

CWT on the paraboloid P?: Suggestions

(2) Transport a CWT from cylinder to 8
o Set-up a CWT on cylinder

7 = {X(XO,H) = (xo, cos 6, sin G)T x ER0KO< 27r}
w.r. to group Gz = Gaax SO(2) with action
X(x0,0) — X(g(x0,0)) = X(axo+b,0+¢ mod 27), g = (a, b, ¢) € G3

o define CWT as usual
e transport that CWT from Z to ‘B by homeomorphism
o get CWT on ‘B
@ Problems :
o Group Gs too small, no irreducible representation in L*(Z, dxod6)
e G3 3 g(a,0,0) # genuine 2-D dilation : it dilates only in the xo

direction )
= not a genuine CWT !

o the same is true for CWT on 3

@ Conclusion : this approach does not respect the geometry of the
problem (the cylinder is flat 1), not sufficient !
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(1-2) [S.T.Ali & G.Honnouvo, Concordia U., Montréal]
(3) Same method as for S? [D.Rosca & JPA]

e Start from orthogonal wavelet basis in the plane xg =0
o Lift it to P? with inverse vertical projection

o Get orthogonal wavelet basis in L?(IP?, ds)
(work in progress)
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The CWT on the conic sections: A unified approach

[ 1. Bogdanova and P. Vandergheynst (EPFL), JPA ]
@ All conic sections are obtained as sections of a double null-cone
C3 = {(x0, x1,x2,x3) ER* 1 xZ — x? — x5 — x3 =0}
by a hyperplane xop =1 +tana(xs —2), 0 < a < /2.
e Analogy : intersection of 3-dimensional cone C3 with plane
xo=1+tana(xs—1), 0 < a < 7/2

For a = m/4 : degenerate paraboloid (half-line)
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Construction of dilations

Construction of conic sections

@ On any section, define generalized projective coordinates

1—-2tana .
U= ———x;, i =1,2,3
Xo — X3tan «

For the sphere (& =0) : u; = x;/x0

@ Dilation = Lorentz boost of parameter t € R along axes xp, x3

@ Result :
ul=u, i=1,2

, (1 —2tana)(upsinh t + uz cosh t)
U3 -_—

ug cosh t + uzsinh t + tan a(ug sinh t + uz cosh t)’
where up = 1+ tan a(us — 2)

For the sphere (v = 0) :
recover stereographic dilation tan % = atan g, with 3 = et
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Construction of dilations

@ Group-theoretical generation of conic sections :
e Start from spherical section xp = 1

e Apply boost along xg, x> = get ellipsoid of revolution around
Xo axis

e Start from hyperbolic section x3 =1 = get 2-sheeted hyperboloid

e As limit from both sides, paraboloid becomes degenerate half-line
(see previous figure)

@ Differential-geometric generation of conic sections :

o upper sheet of null-cone C3 without tip = trivial principal fiber
bundle with base S? (spherical section) and fiber R

e sections of C3 by various planes = global C® sections in that fiber
bundle (in differential geometry sense)
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The CWT on conic sections

Dilation on the sphere or an ellipsoid via Lorentz boost

Graphically :
o S,N = South, resp. North, pole of sphere or ellipsoid
e boost P — P’

e back to sphere by homogeneous coordinates P’ — m(P’)

J-P. Antoine Wavelet analysis, from the line to the two-sphere 162/167

@ Strategy for building CWT :

o Start with spherical section that gives S? and consider the usual
representation U of the Lorentz group SO,(1,3) in L*(S?)

Any other smooth section o : S> — C of the same type

o allows to bring the action of SO,(1,3) to o(S?)
o induces an isometry V,, : L2(S?) — L2(o(S?))
o Get a new UIR of SO,(1,3) in L*(¢(S?)) by VoUo V7!

Then the construction of wavelets on the new section is immediate

o Same technique starting from hyperbolic section giving H?

e Conclusion :
e Promising approach

o Much work remains to be done !
(in progress : S.T.Ali, P.Vandergheynst, D. Rosca, JPA)
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