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Abstract.
The Extreme ultraviolet Imaging Telescope (EIT) of SoHO offers a unique record of the

solar atmosphere for its sampling in temperature, field-of-view, resolution, duration, and ca-
dence. To investigate globally and locally its topology andevolution during the solar cycle,
we consider a multiscale approach, and more precisely we usethe wavelet spectrum.

We present three results among the applications of such a procedure. First, we estimate
the typical dimension of the supergranules as seen in the 30.4 nm passband, and we show
that the evolution of the characteristic network scale is almost in phase with the solar cycle.
Second, we build pertinent time series that give the evolution of the signal energy present in
the corona at different scales. We propose a method that detects eruptions andpost-flaring
activity in EUV image sequences. Third, we introduce a new way to extract Active Regions in
EIT images, with perspectives in e.g. long-term irradianceanalysis.

Keywords: solar corona, chromospheric network, supergranule, flare,post-flare eruption, wavelet,
wavelet spectrum, scale, scale measure

1. Introduction

Since 1990, wavelets and related multiscale representations have been widely
applied in signal processing, and in particular in astrophysical data analysis.
In this paper, we use the Continuous Wavelet Transform, and more precisely
its wavelet spectrum, also calledscale measure. We analyze individual EUV
solar images, as well as large time series thereof, such as the ones offered by
the EIT/SoHO archive. The application of the scale measure to solar images
analysis was first proposed with early results by Hochedezet al. (2002a).
Other type of wavelet transforms have been previously used in solar physics.
For example, Portier-Fozzaniet al.(2001) use a Discrete Wavelet Transforms
and the ‘à trous’ algorithm. Their images analysis revealed hidden structure
such as Coronal Mass Ejection formation and the evolution ofcomplex Active
Regions.

Below we present three applications that exploit differently the ability of
the scale measure to abridge the information present in solar images. First,
we consider observations at 30.4 nm (dominated by He II emission) and show
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that they exhibit a characteristic scale. Indeed, the supergranules of the chro-
mospheric network are visible in the He II images (Reeves, 1976; Worden
et al., 1999). They have a size distribution which has been well studied (Si-
mon and Leighton, 1964; Hagenaar et al., 1997; Meunier, 2003; Del Moro
et al., 2004; DeRosa and Toomre, 2004). The wavelet spectrumdetects this
structure, in the sense that for the scales close to the rangeof supergranules
sizes, the scale measure has a maximum. It is of interest to see how the char-
acteristic scale, and hence the network cell size, evolves over the whole solar
cycle (Meunier, 2003).

Second, we analyze a sequence at 19.5 nm (dominated by Fe XII emission)
when the Sun was active in early May 1998. The 1024× 1024 pixel size
images are recorded every 12 minutes. In quiet periods, the wavelet spectrum
can be well fitted with a linear model; there is no characteristic scale (Aletti
et al., 2000). However, during flares or post-flare eruptions, the wavelet spec-
trum changes, and some characteristic scales may appear. Parametric fits are
successfully applied, providing scalar time series that recapitulate the activity
as seen by EIT in the given passband.

Third, we use a local version of the scale measure to segment the image,
and in particular to extract automatically the active regions.

The images analyzed here have been preprocessed using the standard
eit-prep procedure of thesolar software (ssw)library. Unless stated other-
wise, we use the linearlevel 1images (which are photometrically normalized)
as input to our procedures.

This paper is organized as follows. Section 2 gives some basic background
on wavelet analysis, and presents the Mexican Hat wavelet used in this work.
Section 3 exploit the wavelet spectrum to extract a characteristic scale in
the 30.4 nm passband and to monitor its evolution over the solar cycle. In
Section 4, we analyze a six day time series at 19.5 nm passbandin order
to detect flaring events. Finally, we explain in Section 5 howto segment an
image using a local version of the scale measure. Section 6 isdedicated to a
discussion and prospects for future research.

2. Background

2.1. C   (CWT)

Wavelet transforms have proved to be a useful tool for analyzing structures of
different sizes in a bidimensional signal. An image is a functionf ∈ L2(R2)
which associates a value at a position. In practice, this function is discretized
in pixel and DN. AL1-normalized wavelet is defined as a functionψ ∈ L1(R2)
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that satisfies theadmissibility condition:

Cψ = (2π)2
∫

R2
d2~k

∣∣∣∣ψ̂(~k)
∣∣∣∣
2

∥∥∥∥~k
∥∥∥∥

2
is such that 0< Cψ < ∞ ,

whereψ̂(.) denotes the Fourier transform ofψ, and
∥∥∥~x
∥∥∥ = (x2

1 + . . . + x2
n)1/2 is

the norm of a vector~x = (x1, . . . , xn).
If ψ ∈ L1(R2) ∩ L2(R2), this condition is equivalent to the fact thatψ is

localized around the origin and has zero-average:
∫

R2
ψ(~x)d2~x = 0. (1)

A family of continuous wavelets is obtained by scaling and translation:

ψ~b,a(~x) =
1

a2
ψ


~x− ~b

a

 , ~b ∈ R2, a ∈ R ,

whereψ~b,a is now centered at location~b, and the scaling factor 1/a2 ensures
theL1−normalization ofψ~b,a.

By convolving each of these functionsψ~b,a with the function f , it is pos-
sible to exploref at different scales and locations:

W f (~b, a) =
∫

f (~x)ψ∗
~b,a

(~x)d2~x , (2)

where∗ denotes the complex conjugation.
Equation (2) defines the Continuous Wavelet Transform (CWT), which

acts as a mathematical microscope: thewavelet coefficientsW f (~b0, a0) mea-
sures the component off that is proportional toa0 and is located in a neigh-
borhood of~b0. Equation (2) entails that if an imagef contains some structures

having a size close to the essential support1 of ψ~b,a0
, then

∣∣∣∣W f (~b, a0)
∣∣∣∣ will be

large.
The wavelet functions possessN ≥ 1 vanishing moments if (Antoine et al.,

2004) ∫

R2
ψ(~x)xαyβd2~x, ~x = (x, y), 0 ≤ α + β ≤ N.

When a wavelet hasN vanishing moments, its wavelet coefficients are zero
whenever the signal is a polynomial of orderN − 1. This means that the
wavelet transform only detects the sharp features and singularities such as
edges or ridges. It remains blind to the smoothest parts of the signal.

1 The essential support of a function is defined as the support where the function is larger
than a given small value.
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In practice, the convolution in (2) is computed using the fast Fourier Trans-
form. The discretisation of a function then imposes a minimal scale in order
to avoid numerical instabilities. Our first scale is higher than this minimal
scale; it is taken equal to one pixel.

2.2. W 

Plancherel’s formula can be applied to measure the energy ofa signal from
its CWT:

‖ f ‖22 =
∫

R2

∣∣∣ f (~x)
∣∣∣2 d2~x =

1
Cψ

∫

R2×R0
+

∣∣∣∣W f (~b, a)
∣∣∣∣
2 da

a2
d2~b .

The term
∣∣∣∣W f (~b, a)

∣∣∣∣
2

must be seen as an energy density in the wavelet space.
Let Ω be the domain of interest (in our application, it will be either a part

or the whole solar disk). Integrating
∣∣∣∣W f (~b, a)

∣∣∣∣
2

overΩ gives thescale mea-
sure(Antoine et al., 1998) orwavelet spectrum:

µ(a) =
∫

Ω

∣∣∣∣W f (~b, a)
∣∣∣∣
2

d2~b . (3)

In Section 4 and 5, we demonstrate that the scale measure allows one to
separate different types of activity in the EIT/SoHO images.

It is possible to compute analytically the scale measure fora white noise
random process{X~b} having a standard deviationσ. Indeed, by the Wiener-
Khintchine theorem (Kittel, 1958; Torrésani, 1997), we know that the wavelet
coefficients of such a noisy process have a standard deviation equal to

∥∥∥∥ψ~b,a
∥∥∥∥

L2
σ =

‖ψ‖L2
σ/a. Since the integration of the wavelet coefficients overΩ is equal to

zero, the wavelet spectrumµ(a) in (3) can be seen as the variance of the
wavelet coefficients. It follows thatµ(a) is proportional to:

µ(a) ≃
∥∥∥ψ(~x)

∥∥∥2
L2

σ2

a2
,

Hence if an image is essentially white noise, then for any CWTwith L1-
normalization, the scale measureµ(a) follows a power law with index equal
to −2.

2.3. M H 

Features present in EIT images, such as the chromospheric network in 30.4 nm,
the quiet Sun or Active Region (AR) in the solar corona, can beapproximated
as a superposition of Gaussian peaks of different sizes. For this reason, we use
in our subsequent analysis the Mexican Hat (MH) wavelet transform, since it
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provides an optimal filter for detection of Gaussian peaks on1/ f noise (Sanz
et al., 2001). The Mexican Hat wavelet and its Fourier transform are both real
and have an analytical expression:

ψ(~x) =
(
2−
∥∥∥~x
∥∥∥2
)
exp
(
−
∥∥∥~x
∥∥∥2 /2
)

; ψ̂(~k) = 2π
∥∥∥∥~k
∥∥∥∥

2
exp
(
−
∥∥∥∥~k
∥∥∥∥

2
/2
)

(4)

The MH wavelet is the second derivative of a Gaussian, and hence pos-
sess two vanishing moments (Antoine et al., 1998). It is possible to compute
analyticallyµ(a) if the signalI (~x) is a Gaussian peak with standard deviation
τ centered at~b = ~0:

I (~x) =
A

2πτ2
exp


−
∥∥∥~x
∥∥∥2

2τ2

 ; Î (~ω) =
A
τ

exp

−
τ2
∥∥∥~ω
∥∥∥2

2

 , (5)

where Î (~ω) is the Fourier transform ofI (~x). By the convolution theorem we
have

µ(a) =
∫
|Î (~ω)ψ̂(a~ω)|2d2~ω =

2πa4A2

τ2(a2 + τ2)3
. (6)

The maximum ofµ(a) is attained foramax =
√

2τ: we say that there is a
characteristic scaleat

√
2τ. Intuitively, this means that the shape ofψ~0,amax

follows as closely as possible the functionI (~x).
Sinceµ(a) is a squared quantity that often follows a power law as will be

shown in our applications, we took the convention of representing log(
√
µ(a)) =

1
2 logµ(a).

Figure 1 illustrates the behavior ofµ(a) on a signal composed of Gaussian
peaks having a standard deviationτ = 20 and a unit amplitudeA. The signal is
also perturbed by Gaussian white noise having a standard deviationσ = 0.01.
It is clear that the scale measure separates the features present at different
scales: at small scales, the decreasing slope of1

2 log(µ(a)) represents the white

noise background, whereas the maximum ata =
√

2τ indicates the presence
in the signal of the Gaussian peaks.

3. Time evolution of the chromospheric network size

The 30.4 nm passband of EIT is dominated by He II emission and shows the
chromospheric network. In this section, we compute acharacteristic scale
amax associated to the network, that is, the scale for which the wavelet spec-
trum µ(a) is maximum. We indicate how this particular scale can be related
to the size of the network cell, and show its evolution over the solar cycle.
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Figure 1. (a) Signal composed of 5 Gaussian peaks (τ = 20, A = 1) on Gaussian white
noise withσ = 0.01 (b) Graph of log(µ(a)2) versus log(a), wherea is the scale andµ(a) is
the wavelet spectrum. At small scales the white noise gives adecreasing wavelet spectrum
(with slope close to−1), whereas at larger scale the wavelet spectrum presents a maxima at
log(τ

√
2) = log(20

√
2) = 3.32.

3.1. C   EIT 30.4 

In this study, the scale measureµ(a) is computed by integration over a diskΩ
centered at the center of the Sun, and having a radius equal to0.5R⊙, R⊙
being the solar radius. This choice ofΩ limits the distortion (or shorten-
ing) of the network’s size due to the projection of the solar sphere on the
two-dimensional plane of the sky. We choose the value 0.5R⊙ because the
projection then induces a bias always smaller than 15%, which is comparable
to other approximation errors. Indeed, the observed characteristic scale vari-
ation exhibits instantaneous fluctuations of the order of 10%, see Figure 4.
These fluctuations result from the method (finite grid of scalesa, scale plate
variation), and from possible intrinsic solar variability.

The imageI304 in Figure 2(a) represents the 0.5R⊙ solar disk taken on
January 2, 1997 in the 30.4 nm channel. The corresponding scale measure
exhibits a maximum at log(amax) = 1.26, i.e.amax = 3.53, see Figure 3.
Figure 2(b) displays the MH wavelet coefficients at thecharacteristic scale
amax, that isWI304(3.53, ~b). As explained in Section 2, the wavelet coefficient
of a function f will be maximum when the corresponding wavelet follows as
closely as possible the shape off . This is exactly what happens in Figure 2:
the image given by the CWT at the characteristic scale reveals precisely the
contour of the network cells seen in the original image. Below we define
(somewhat loosely) thenetwork sizeas the average between the cell diameters
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(the cell interior appears in dark in EIT images like Figure 2(a)), and the cell
junction thickness (these junctions are shown in bright in EIT images). With
this definition, we can say that the characteristic scale gives an indication of
the network size.

The essential support diameter of the MH wavelet being 4amax, and the
EIT pixel representing 1.800 Mm at the Sun (Auchère and Artzner, 2004),
we can estimate the network size diameter as 4× amax × 1.8 Mm, and its
surface asπ (2 × amax × 1.8)2 Mm2. With the above valueamax = 3.53, we
obtain a diameter of 25.4 Mm (and a surface of 507 Mm2). Those values are in
good agreement with published values (Simon and Leighton, 1964; Meunier,
2003; Del Moro et al., 2004; DeRosa and Toomre, 2004) of network cell
dimensions. For example, Simon and Leighton (1964) found cell diameters
that range between 20Mm and 50Mm, whereas Del Moroet al.(2004) reports
a mean cell diameter of 27Mm for some images taken in 1999.

−200

−100

0

100

200

300

400

500

600

(a) 0.5R⊙ solar disk (b) CWT at characteristic scale

Figure 2. (a) 0.5R⊙ solar disk observed on January 2, 1997 in the 30.4 nm passband. (b)
Mexican Hat Continuous Wavelet Transform (CWT) of the left image computed at the charac-
teristic scaleamax = 3.53 pixels. The CWT is maximum at that scale because the corresponding
wavelets have a size close to the one of the network.

3.2. E        

We now analyze EIT 30.4 nm images taken during a period of 7 years, from
January 1, 1997 up till September 5, 2004, at a cadence of one image every 5
days. All 595 images have 1024×1024 pixels and do not contain any missing
block. Our interest lies in studying the time evolution of the network size over
the solar cycle by means of the characteristic scale determined in the previous
section.
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Figure 3. Scale measure of the image on Figure 2(a) in log-log scale. The maximum value
of µ(a) is reached atamax = 3.53, leading to a typical network cell area of∼ 500 Mm2. See
Section 3.1

Before computing the scale measure, it is necessary to reduce the effect of
the Active Regions as seen in 30.4 nm. Indeed, these large bright structures
produce a linear trend in the scale measure that can wipe out the characteristic
scale. Hence in each image, the pixel values that are higher than a given
constant thresholdT⋆ are replaced byT⋆. This means that Active Regions are
replaced by a constant value for which the corresponding CWTis zero, and
thus their contribution to the scale measure is null. The valueT⋆ was chosen
to reduce the impact of active region(s) onµ(a), while leaving untouched
the Solar Minimum images. The optimum was found to be 400 DNs−1 in
photometrically normalized images, and it is the 0.86−th quantile of the last
image in our data set.

After this preprocessing, we compute the Mexican Hat CWT of the whole
image, using 60 scalesa with values between 1 and 20, regularly spaced on
a logarithmic scale. We compute the scale measureµ(a) as in Equation (3)
using as domainΩ the solar disk of radius 0.5R⊙.

We are interested in a characteristic scaleamax that lies within the range of
values [1.5; 7.5] pixels, that is, that corresponds to a network size belonging to
[10.8 Mm;54 Mm]. However, several images do not show any characteristic
scale within this range. This happens for example when a large AR covers
most of the domainΩ. In this case, it is not possible anymore to extract an
indication of the network size. Consequently, our algorithm ignores these
images. Out of the 595 images treated, 45 do not exhibit any characteristic
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scale within the given range. Most of these images dates from2001, during
the solar maximum.

Figure 4 represents the evolution of the network size diameter over a
period of 7 years, together with a nonparametric fit (Friedman, 1984) of
this evolution. We displayed here only the 550 diameters that falls within
the range prescribed above. Note that in this analysis we didnot correct for
the varying distance between the SoHO mission and the Sun. Indeed, the
corresponding approximation error is of a few percent, whereas our observed
quantity (the characteristic scale) varies by a factor 2.

Figure 4 shows clearly that the network cell diameter increases from solar
minimum to solar maximum, with peaks in 2000 and 2002. After the solar
maximum, this diameter decreases. Note that the two peaks seen in the non-
parametric fit of Figure 4 should not be taken in too strict a sense. Indeed, in
2001 several images were excluded from the analysis becauseno character-
istic scales were found within the desired range. Hence the nonparametric fit
may slightly underestimate the actual values in 2001.

These results are in concordance with the analysis of Meunier on MDI/SoHO
magnetograms (Meunier, 2003), which also shows that the network charac-
teristic size increases as the Sun reaches its period of maximal activity.
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Figure 4. Time evolution of the estimated network size diameter in Mm.This diameter is
computed asamax × 4 × 1.8, whereamax is the characteristic scale computed from the scale
measure. The network size increases from solar minima to solar maxima.
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4. Global scale measure analysis for detection of flares

We now consider a coronal data set constituted of a higher cadence sequence
taken by the EIT telescope in the 19.5 nm passband (dominatedby Fe XII
emission) from 1 May 1998 up till 6 May 1998. As before, image format is
1024× 1024, with no missing blocks. The sampling time is in generalof 12
minutes. However, if an image contains some missing blocks,it is omitted
from the analysis, hence it occurs that the sampling time is more than 12
minutes. During these six days there were two periods that collected 512×512
rebinned images. Hence no 1024× 1024 images have been recorded on May
1 between 12:25 and 16:53. There is again such a gap between 18:24 on May
2 and 16:34 on May 3.

This particular data set was chosen for its high solar activity content: it
contains two X-flares, four M-flares, 25 C-flares and 16 B-flares as recorded
by the soft X-ray flux monitor (Bornmann et al., 1996) aboard the GOES-8
satellite. Our aim here is to analyze the wavelet spectrum when it is affected
by the presence of bright features. Before proceeding to thewavelet analysis,
we found it useful to first pre-process the images in order to remove most of
the cosmic rays hits.

4.1. D      

To remove cosmic ray hits (hereafter CRH), we modified the algorithm pro-
posed in (Hochedez et al., 2002b; Antoine et al., 2002; Jacques, 2004), so as
to decrease the probability of removing solar features (such as brightenings
or loop footpoints).

The method detailed in Jacques (2004) proceeds as follows. In a first stage,
the noise level in the image is estimated locally using a median filter. CRHs
will belong to the set of points (denotedΣ) that exceed several times this noise
level. As such, the setΣ contains many solar features. In a second stage, a
local Hölder regularity analysis selects points that are uncorrelated with their
neighbors. Those are less likely to represent solar structures. The algorithm
considers that these pixels have been hit by cosmic rays, andreplaces their
values by a median over a small neighborhood of size 3× 3. The method
iterates over these two former stages.

The above algorithm correctly detects most CRHs, but still triggers on
some solar features. Indeed, given the good Point Spread Function (PSF) of
the EIT optics, point like solar structures can be uncorrelated with their neigh-
bors, and therefore mistakenly categorized as CRHs. This happens especially
in the ARs or close to the limb. To prevent the algorithm from removing solar
features, we assume that a CRH will rarely appear at the same location on
two consecutive images. On the contrary, small solar objects may live longer
than 12 minutes at a same location. Our modification consistsin looking at
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Figure 5. Example of a linear trend of logµ(a) corresponding to the image taken on May 4,
1998 at 03:03.

two consecutive images (taken 12 minutes apart). If a detected CRH appears
in two successive images, then it is considered as afalse CRH and is not
removed from the original image.

4.2. D      19.5 

In this section, we analyze theon-discpart, denotedΩ⋆, of the EIT images
in the 19.5 nm channel that represents the solar corona. The on-disc part is
defined as the disk centered on the Sun and having a radius equal to 0.95R⊙
(in order to avoid edge effect at the limb). The scale measure is computed by
integration overΩ⋆, and we now study its behavior in detail.

4.2.1. Log-linear behavior of the scale measure
In the absence of flares, the wavelet spectrum of a solar corona image typi-
cally behaves approximately like a power law (Hochedez et al., 2002a), that
is:

1
2

logµ(a) = β0 + β1 loga+ ǫ , (7)

whereǫ represents the statistical error in the model. This error accounts for
the fact that the values of{µ(a)} computed from the images do not lie exactly
on a straight line when represented on a log-log scale. Figure 5 shows an
example of a data set{log(a), log(µ(a))} that follows approximately a straight
line. It gives an indication of theautosimilarityshown in the solar corona, in
the sense that the wavelet spectrum is always steadily increasing.
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We now look at a subset of 44 images taken on May 4, between 03:00
and 15:00. During this period, no flare was recorded. For eachimage, we
compute the wavelet spectrumµ(a) and we estimate the parameters (β0, β1)
of its log-linear fit (7) using the least squares (LS) method.Let (̂β0, β̂1) denote
the resulting LS estimate. We also evaluate the goodness of fit by computing
theR2−statistics, which is defined as the ratio between the variance explained
by the model12 logµ(a) = β̂0 + β̂1 loga and the total variation of the original
data set. AnR2 = 1 means that the model fits the data perfectly (that is, in
case of model (7), that the points{log(a), log(µ(a))} lie exactly on a straight
line), andR2 = 0 means the model is totally inappropriate (Chatterjee and
Hadi, 1986).

Figure 6 displays the time evolution of the interceptβ̂0, the slopêβ1, and
the goodness of fitR2 for these 44 images. Note that theR2 is always larger
than 0.95, indicating a good linear fit. It is interesting to note that β̂0 and
β̂1 evolve in opposite ways: the larger the intercept, the smaller the slope.
Figure 7(a) identify more precisely this relationship between intercept and
slope, that is, it shows the linear least squares estimate that goes through the
points{(̂β1, β̂0)}. This linear fit on Figure 7(a) follows the equation

β̂0 = 4.87− 2.69̂β1, with R2 − statistics= 0.87 (8)

By putting equation (8) into the model 0.5 log(µ(a)) = β̂0+β̂1 loga,we see
that at the scale log(a⋆) = 2.69, we have1

2 log(µ(a⋆)) = 4.87. In other words,
the energy at the scalea⋆ = exp(2.69)≈ 14.4 pixels∼ 26.5Mm remains more
or less constant across time, even though the energy level atsmall scales is
subject to variations. Figure 7(b) illustrates the fact that a⋆ can be seen as a
“fixed point” scale. The origin of this fixed scale is not yet understood, and is
a subject for future research.

4.2.2. Log-quadratic behavior of the scale measure
In the presence of flares the dynamics ofµ(a) changes: when the flare domi-
nates the image from a signal energy point of view, it createsa characteristic
scale:µ(a) exhibits a maximumwithin (and not at the boundary of) the range
of values ofa = 1, . . . , 20. The data (loga, 1

2 logµ(a)) are then best fitted
using least squares method for the quadratic model

1
2

logµ(a) = γ0 + γ1 loga+ γ2(loga)2 + ǫ , (9)

where (γ0, γ1, γ2) are the parameters of the model, andǫ is the statistical error.
In fact, a small quadratic component is always present in theevolution of

logµ(a), as can be noticed from Figure 7(b). However, we need a tool to de-
cide whether this quadratic component may be neglected or not. Our proposed
method is as follows. We fit the linear model (7) to the data (log(a), log(µ(a)))
using the least squares method, and we compute the resultingR2−statistics,
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Figure 6. Estimated intercept̂β0 and slopêβ1 together with theR2-statistics for the 19.5 nm
images taken on May 4, 1998. Note how the intercept and slope evolves in opposite directions.

denotedR2
lin . If R2

lin ≥ 0.95, we consider that the model is linear (quiet sit-
uation). On the contrary, ifR2

lin < 0.95, we compute the parameters of the
quadratic model (9). If theR2-statistic for this quadratic model is superior to
0.9, we consider the model (9) to be satisfactory, otherwise weconclude that

0.24 0.26 0.28 0.3 0.32 0.34 0.36
3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

Slope β
1

In
te

rc
ep

t β
0

0 0.5 1 1.5 2 2.5 3 3.5
3.6

3.8

4

4.2

4.4

4.6

4.8

5

log a

0.
5 

lo
g 

µ(
a)

Figure 7. (a) Intercept̂β0 as a linear function of the slopêβ1 (b) First 10 scale measures of the
May 4, 1998 series. The vertical line indicates the scalea⋆ where all the images have a similar
value ofµ(a).
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Figure 8. Values ofR2
lin for the series of May 1998 in the 19.5 nm passband of EIT. Diamond

‘♦’ indicates thatR2
lin < 0.95, whereas a star ‘∗′ stands for cubic shape. The dashed (resp. con-

tinuous) lines represent the beginning of an M-flare (resp. X-flare). The dotted lines represent
B- or C-flare activity (flare itself or post-flare eruption) visually seen in EIT image.

the data follows a model of higher order. This selection of a model (linear,
quadratic, higher order) based on the value of theR2−statistics is appropriate
to our situation since the data set{log(a), log(µ(a))} contains little noise.

Figure 8 represents theR2
lin values for our data set. Therein, the detection

of a quadraticµ(a) is indicated by a diamond (‘♦’). Only one image had a
cubic scale measure; it is represented by a star (‘∗’). We look at the corre-
spondence between a quadratic behavior of the scale measurein EIT, and the
occurrence of flares recorded by the GOES X-ray sensor. We discover that
M-flares and above are always related to a quadratic behaviorof the scale
measure.

First, the vertical dashed (resp. continuous) lines on Figure 8 represent
the beginning of an M-flare (resp. X-flare). Every time there is an M- or
X-flare, it is detected by our method. Indeed, these strong energetic events
produce a clear characteristic scale inµ(a). Second, fainter events are also
detected. A visual inspection of the images having a quadratic behavior of
µ(a) shows either the presence of a flare, or of a post-eruption activity. The
dotted vertical lines in Figure 8 indicate the time of events(either flares or
post-flare eruptions) that correspond to GOES X-ray events detected by our
method.

Figure 9(a) shows the snapshot of a post-flaring activity recorded on May
1 at 18:36. From GOES records, the corresponding C-flare ended at 18:17.
After the flare there was probably a magnetic reconnection grabbed by our
technique, followed by the eruption of a filament. The detailof the region
that produces a B-flare on May 5 at 00:20 is represented in Figure 9(b). It
is this region that produces the characteristic scale, and hence the quadratic
behavior inµ(a). Note how the scale measure is sensitive to localized events
like flaring. This is due to the fact that the CWT itself is localized, and aims
at detecting discontinuities in the signal. Hence a bright region results in a
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high value of the wavelet coefficients present at the location and scale of the
bright event. In other words, due to the localized nature of the CWT, the scale
measure is more reactive to local features than, e.g. the total sum or total
variation time series.

Figure 8 shows two anomalous images, i.e. false positives detection of
flares. The image recorded on May 3 at 17:35 shows a quadratic component
without any flaring event: here the quadratic component is infact created
by a cosmic ray that was not filtered out by our preprocessing.Finally, the
cubic behavior detected on May 6 at 15:13 is due to a small bright region in
a magnetic loop that perturbs the linear trend of the scale measure.

(a) Post-flare (b) Flare

Figure 9. (a) Post-flaring activity recorded on May 1 at 18:36. (b) End of a B-flare recorded
on May 5 at 00:20

All the B- or C-flares recorded by GOES do not necessarily havea coun-
terpart in our detection using the global scale measure. This is due partly to
the limited cadence of EIT images, and partly to the difference in wavelength
ranges (EUV versus XUV) of both instruments. Indeed, the study of Bergh-
manset al.(2001) shows that there is not always a one to one correspondence
between events observed in the XUV (such as the SXT telescopeon board
Yohkoh) and in the EUV.

Since nearly all the scale measures show a good quadratic fit,Figure 10
summarizes the six days time series using the estimated LS parameters (̂γ0, γ̂1,
γ̂2) of the quadratic model (9). A bright solar event (flare or post flare erup-
tion) will create a characteristic scale, that is, a maximumin µ(a), and the
corresponding value of̂γ2 will be negative. On the other hand, a cosmic ray
will induce a lot of energy at small scale, and may create a quadratic behavior
but with a positive square component, as it is the case for theimage taken on
May 3 at 17:35. Note also the value of the slopeγ̂1, which is close to 0.5:
µ(a) is essentially proportional toa.
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Figure 10. Interceptγ1, slope componentγ2, and quadratic componentγ3 for the 19.5 nm
series. Diamond ‘♦’ indicates thatR2

lin < 0.95, whereas a star ‘∗’ stands for cubic shape.
The continuous (resp. dashed) lines represent the beginning of an X-flare (resp. M-flare). The
dotted lines represent B- or C-flare activity (flare itself orpost-flare eruption) visually seen in
EIT image.

5. Local scale measure for image segmentation

In this section, we propose a method to segment the solar diskbased onlocal
scale measures. Other works on segmentation include Wordenet al. (1999),
where the authors present a simple method for segmenting 30.4 nm images.
The aim is to study the respective contributions of the different structures
(plage, enhanced network, active network, quiet chromosphere) to the solar
He II irradiance. Although the authors present a good motivation for doing
segmentation, their method is somewhat ad hoc; in particular the parameters
used for segmentation are derived by trial and error. Similarly, Veselovsky and
Zhukov (Veselovsky et al., 2001; Zhukov et al., 2002) studied the contribution
of AR, Coronal Holes and Bright Points to the total intensityseen in EIT
images.

Our method is based on the fact that AR and Quiet Sun have different
local scale measures. A clustering method allows to connectregions having a
similar evolution of the local scale measure, and thereforeis able to separate
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regions of different activity. We first present our algorithm, and thereafter
show its performance on two particular examples.

5.1. A  

Let T = 33 be the diameter pixel size of the circular region used for computa-
tion of the local scale measure. Our treated images have 1024× 1024 pixels.
For each location~u situated at least at a distanceT/2 from the border of the
imageI , we perform the following operations:

1. Construct a small circular regionDT
~u

of diameterT centered at~u.

2. For a range of scalesa ∈ [1, 3], compute the local scale measure as

µT(~u, a) =
∫

DT
~u

∣∣∣∣WI (~b, a)
∣∣∣∣
2

d2~b

3. Estimate the parameters (βT
0,~u, β

T
1,~u) and compute theR2−statistics (de-

noted (R2)T
~u

) for the linear model

logµT(~u, a) = βT
0,~u + β

T
1,~u loga+ ǫ.

Let β̂T
0,~u andβ̂T

1,~u denote these least squares estimates.

Given the diameterT = 33 pixels, the maximum scaleamax = 3 is cho-
sen so that the circular regionDT

~u
may contain the essential support of four

wavelets at scaleamax without overlapping.
As a result of the operations described above, we obtain 3 matrices of size

992× 992. On these matrices we apply a mask in order to retain only the
on-discpart, similarly to what is done in Section 4. For a given location ~u, the
behavior of (̂βT

0,~u , β̂
T
1,~u , (R2)T

~u
) will be different depending on whether~u lies

within an Active Region, inside the Quiet Sun, or close to a cosmic ray hit.
Our proposed method consists in grouping the values of (β̂T

0,~u , β̂
T
1,~u , (R2)T

~u
)

into homogeneous clusters. Note that the data set used for clustering is quite
large: it consists of≈ 4.105 locations~u (or ‘observations’ in statistical terms)
having each 3 components (β̂T

0,~u , β̂
T
1,~u, and (R2)T

~u
). Hence, amongst the set of

clustering methods proposed in the statistical literature, we used the CLARA
method of Kaufman and Rousseeuw (Kaufman and Rousseeuw, 1990; Struyf
et al., 1997), since it is precisely designed to deal with large data sets. The
CLARA method uses a partitioning of the database into a set ofk clusters,
wherek needs to be specified by the user. Each cluster is representedby
one of the objects in the cluster (called ‘medoids’), and thealgorithm aims
at finding the partition that minimizes the sum of distance between a point
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and its medoids. The procedure also gives as output a qualityindex (called
the ‘isolation’ number) that reflects the strength of the clustering. Hence in
the figures, the clusters are numbered as follows: the cluster number 1 has
the highest quality index, the cluster number two the secondhighest quality
index, and so on.

5.2. S     

We first tested the segmentation procedure on two 30.4 nm images, one be-
ing taken in 1996 in period of solar minima, and the second in 2000 during
maximal activity of the Sun. We tried the partitioning method using 2, 3, and
4 clusters. As expected, the 3rd and 4th clusters are negligible, only two large
sets of points are detected by the method: one corresponds tothe AR seen
in 30.4 nm, and the second to the network, see Figure 11. The comparison
between Figures 11(b) and 11(d) shows that the proportion ofAR is higher
in period of maximal activity. Hence this method could be used as a basis
for automatically monitoring the proportion of the solar disk that contain
active regions in the 30.4 nm passband. Similarly to the workof Wordenet
al. (1999), the aim would be to understand how the different structures seen
in He II contribute to the solar irradiance and its variability.

5.3. S     

The images of He II could rather clearly be decomposed into network and
active regions. The situation is more complex in the case of solar corona im-
ages, since these contain Active Regions, Quiet Sun, and Coronal Holes that
do not have clear mutual boundaries. As before we performed the clustering
method using 2, 3 and 4 clusters. We found out that the Quiet Sun and the
Coronal Holes are grouped into one cluster. As we increase the number of
clusters in the segmentation, the CLARA algorithm divides the bright regions
and leaves untouched the Quiet Sun and Coronal Holes. Figure12 shows the
partitioning of two 19.5 nm (Fe XII) images using 3 clusters.One image was
taken during solar minimal activity, the other in period of solar maxima. In
both images, the first two clusters corresponds to bright regions: the cluster
2 contains the Active Regions and magnetic loops, and the cluster 1 groups
the points close to the Active Regions that are relatively bright. The cluster
number 3 represents the Quiet Sun and Coronal Holes, and has alower quality
index (i.e. is less well separated) than the first two clusters.

The method proposed in our paper could be used toautonomouslyeval-
uate the surface covered by active regions, and to also address EUV irradi-
ance issues. Moreover, image segmentation procedures allow the develop-
ment of new tools for long term studies equivalent to butterfly diagrams. A
pre-processing that removes the strongest cosmic rays suchas the one de-
scribed in Section 4.1 would probably improve the performance. However, it
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Figure 11. (a) On-disc part of an 30.4 nm EIT image recorded on December 22,1996. (b)
Result of the CLARA partitioning on the values of the linear fit and R2−statistics of local
scale measure. The two clusters shows the Active Region (Cluster 1) and the chromospheric
network (Cluster 2). (c) On-disc part of an 30.4 nm EIT image recorded on August 03, 2000.
(d) Result of the partitioning method of the image in (c) using two clusters. Again, Cluster 1
identifies the AR and Cluster 2 the network.

is important to keep solar features untouched during this operation. The fact
that the Coronal Holes cannot easily be separated from the Quiet Sun may
be due to the fact that both structures are relatively homogenous compared
to ARs. In order to improve the performance of the segmentation, quadratic
components of the local scale measure will be used in future research.
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(a) 19.5 nm image in 1996 (b) Segmentation of (a) in three clusters
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(c)19.5 nm image in 2000 (d) Segmentation of (c) in three clusters

Figure 12. (a) On-disc part of an 19.5 nm EIT image recorded on December 22, 1996. (b)
Result of the partitioning method on the values of the intercept, slope andR2 statistics com-
puted from the local scale measure of the image. Cluster number 1 reveals the relatively bright
areas close to the AR, whereas the cluster 2 shows the active regions together with regions that
contains cosmic ray hits or brightenings. The quality indexof these two clusters are close. The
cluster 3 groups together the Quiet Sun and Coronal holes. (c) On-disc part of an 19.5 nm EIT
image recorded on August 03, 2000. (d) Partitioning of the image in (c) in 3 clusters: Cluster
number 1 reveals the areas close to the Active Regions that are brighter than the Quiet Sun,
cluster 2 represents the active regions and some cosmic ray hits, and the Cluster 3 delimits the
Quiet Sun together with the Coronal Holes

6. Discussion

In this paper, we have shown three applications of the wavelet spectrum in
the analysis of EIT/SoHO images. The wavelet spectrum allows to follow the
evolution of the chromospheric network size, to detect flares, and to separate,
e.g, Quiet Sun and Coronal Holes from the Active Regions. These promising
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results stimulate further investigations. We now discuss two possible exten-
sions of our work.

In the 30.4 nm passband, we are working towards an approximation of the
network sizedistributionusing the scale measure. It will be of interest to see
how this distribution evolves over the solar cycle.

In the 19.5 nm passband, a higher cadence of images would make it pos-
sible toforecasteruptions. Indeed, we empirically observed a small increase
in scale measure at the smallest scale before a large eruption occurred. We
conjecture that the scale measure reveals unresolved phenomena that could
be interpreted in the framework of resistive MHD .

Finally, we only showed two applications of the segmentation of an image.
In order to separate more precisely an image into Quiet Sun, Active Re-
gions, Coronal Holes, Filaments/Prominences, etc,..., it might be necessary
to use the local scale measure on data acquired simultaneously at various
temperatures. The AIA instruments of the SDO mission will offer such a
possibility.
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