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ABSTRACT

We review the general properties of the wavelet transform, both in its continuous and its

discrete versions, in one or two dimensions, and we describe some of its applications in

signal and image processing. We also consider its extension to higher dimensions and to the

space-time context, for the analysis of moving objects.

1. MOTIVATION: WHAT IS WAVELET ANALYSIS?

Wavelet analysis is a particular time- or space-scale representation of signals which has found a wide
range of applications in physics, signal processing and applied mathematics in the last few years. In
order to get a feeling for it and to understand its success, let us consider first the case of one-dimensional
signals.

It is a fact that most real life signals are nonstationary. They often contain transient components,
sometimes very significant physically, and mostly cover a wide range of frequencies. In addition, there
is frequently a direct correlation between the characteristic frequency of a given segment of the signal
and the time duration of that segment. Low frequency pieces tend to last a long interval, whereas high
frequencies occur in general for a short moment only. Human speech signals are typical in this respect.
Vowels have a relatively low mean frequency and last quite long, whereas consonants contain a wide
spectrum, up to very high frequencies, especially in the attack, but they are very short.

Clearly standard Fourier analysis is inadequate for treating such signals, since it looses all information
about the time localization of a given frequency component. In addition, it is very uneconomical. If a
segment of the signal is almost flat, i.e., uninteresting, one still has to sum an infinite series for reproducing
it. Worse yet, Fourier analysis is highly unstable with respect to perturbation, because of its global
character. For instance, if one adds an extra term, with a very small amplitude, to a linear superposition
of sine waves, the signal will barely be modified, but the Fourier spectrum will be completely perturbed.
This does not happen if the signal is represented in terms of localized components.

Therefore, signal analysts turn to time-frequency (TF) representations. The idea is that one needs
two parameters. One, called a, characterizes the frequency, the other one, b, indicates the position in the
signal. This concept of a TF representation is in fact quite old and familiar. The most obvious example
is simply a musical score!

If one requires, in addition, the transform to be linear, a general TF transform will take the form:

s(x) �→ S(b, a) =
∫ ∞

−∞
ψba(x) s(x) dx, (1.1)

where s is the signal and ψba the analyzing function (we denote the time variable by x, in view of the
extension to higher dimensions). Within this class, two TF transforms stand out as particularly simple
and efficient, the windowed or short time Fourier transform (STFT) and the wavelet transform (WT). For
both of them, the analyzing function ψba is obtained by a group action on a basic (or mother) function
ψ, only the group differs. The essential difference between the two is in the way the frequency parameter



a is introduced. For the WT, one takes:

ψba(x) =
1√
a
ψ

(
x− b

a

)
. (1.2)

The action of a on the function ψ is a dilation (a > 1) or a contraction (a < 1): The shape of the function
is unchanged, it is simply spread out or squeezed. As for b, it is simply a translation. By contrast,
the STFT takes for ψba the function ψba(x) = eix/a ψ(x − b). This means that the a-dependence is a
modulation (1/a ∼ frequency); the window has constant width, but the lower a, the larger the number
of oscillations in the window ψ.

Actually one should distinguish between two radically different versions of the wavelet transform, the
continuous WT (CWT) and the discrete WT (DWT). The CWT plays the same rôle as the Fourier
transform and is mostly used for analysis and feature detection in signals, whereas the DWT is the
analogue of the Discrete Fourier Transform (see for instance (Rioul, 91)) and is more appropriate for
data compression and signal reconstruction. Somewhat schematically, one may say that the CWT is more
natural to the physicist, while the DWT is more congenial to the signal analyst and the numericist. In
these lectures, we will review the CWT, both from the theoretical side and in its practical implementation.
We will proceed in two steps. First the one-dimensional case, then the extension to higher dimensions,
including space and time-dependent wavelets appropriate for motion analysis.

Let us begin by a few introductory remarks, to indicate where we are aiming. Both for the continuous
and the discrete versions, the WT is given by the basic transformation formula, which reads, according
to (1.1) and (1.2):

S(b, a) = a−1/2

∫ ∞

−∞
ψ (a−1(x− b)) s(x) dx, (1.3)

where a > 0 is a scale parameter and b ∈ R a translation parameter. In the relation (1.3), s is a finite
energy signal and the function ψ, the analyzing wavelet, is assumed to be well localized both in the
time domain and in the frequency domain. In addition ψ must satisfy an admissibility condition, which
guarantees the invertibility of the WT, and in most cases, may be reduced to the requirement that ψ
has zero mean. Therefore, since ψba acts like a filter (convolution), the WT s �→ S provides a local (i.e.,
bandpass) filtering, both in space (b) and in scale (a). The transform S(b, a) is nonnegligible only when
the wavelet ψba matches the signal, that is, the WT selects the part of the signal, if any, that lives around
the time b and the scale a. In addition, combining this feature with the localization properties of ψ(t)
and its Fourier transform ψ̂(ω), we see that the WT works at constant relative bandwidth, ∆ω/ω =
constant. Thus it is more efficient at high frequency, i.e., small scales, in particular for the detection of
singularities in the signal.

In addition, the transformation Wψ : s(x) �→ S(b, a) may be inverted exactly, which yields a recon-
struction formula :

s(x) �
∫ ∞

−∞
db

∫ ∞

0

da

a2
ψba(x)S(b, a), (1.4)

This means that the WT provides a decomposition of the signal as a linear superposition of the wavelets
ψba with coefficients S(b, a) — the analogy with Fourier integrals or series is clear.

We will discuss the mathematical properties of the CWT and its actual implementation for applications
in Sections 2 and 3, respectively.

All this concerns the continuous WT. But, in practice, for the actual computations, the transform
must be discretized, by restricting the parameters a and b in (1.3) to the points of a lattice, typically a
dyadic one:

cj,k = 2−j/2
∫ ∞

−∞
ψ(2−jx− k) s(x) dx, j, k ∈ Z. (1.5)



Then the reconstruction formula (1.4) becomes simply

s(x) =
∑
j,k∈Z

cj,k ψ̃j,k(x), (1.6)

where the function ψ̃j,k may be explicitly constructed from ψj,k. In this way, one arrives at the theory of
frames or nonorthogonal expansions (Daubechies, 86) (Daubechies, 92), which offer a good substitute to
orthonormal bases. Very general functions ψ satisfying the admissibility condition described above will
yield a good frame, but not an orthonormal basis, since the functions {ψj,k(x) ≡ 2j/2ψ(2jx−k), j, k ∈ Z}
are in general not orthogonal to each other! This problem of discretization will be evoked in Section 4.

Yet orthonormal bases of wavelets can be constructed, but by a totally different approach, based
on the concept of multiresolution analysis. We emphasize that the discretized version of the CWT just
described is totally different in spirit and method from the genuine DWT. Although this is not the main
topic of these lectures, we will provide a rapid glimpse of the DWT in Section 5. The full story may be
found in (Daubechies, 92), for instance.

As we will see below, the CWT is extremely efficient and has a number of nice mathematical properties.
Where does all that come from? The answer, as so often in physics, lies in group theory. In a nutshell,
wavelets are ‘coherent states’ associated to the natural representation in the space of finite energy signals
of the affine group of the line (the ax+ b group, consisting of dilations and translations). Now a general
theory is available for constructing similar families of vectors from representations of various types of
groups (Ali, 95) (Ali, 99). Thus a general pattern emerges (see Section 6), that will yield wavelets in two
or more dimensions, wavelets on the sphere, or space-time wavelets designed for the analysis of moving
objects. To give an example, in 2-D, the analog of (1.3) is

S(b, a, θ) = a−1

∫
R2

ψ(a−1r−θ(x − b))s(x) d2x. (1.7)

where, as before, s(x) is the 2-D signal (the image to be analyzed) and ψ(x) is the analyzing wavelet,
which is translated by the vector b ∈ R2, dilated by a > 0 and rotated by an angle θ (r−θ is the rotation
operator). Since the wavelet ψ is required to have zero mean, we have again a bandpass filtering effect,
i.e., the analysis is local in all four parameters a, θ, b and, here too, it is particularly efficient at detecting
discontinuities or specific sharp features in images. We will discuss the 2-D case in detail in Section 7
and the other generalizations in Section 8.

Finally a word about references. The literature on wavelet analysis is growing exponentially, so that
some guidance may be helpful. As a first contact, the introductory articles (Rioul, 91) and (Heil, 89) may
be a good suggestion, followed by the popular book (Hubbard, 98) or the elementary book (Meyer, 93).
For a survey of the various applications, and a good glimpse of the chronological evolution, there is
still no better place to look than the proceedings of the three large wavelet conferences, Marseille 1987
(Combes, 90), Marseille 1989 (Meyer, 91) and Toulouse 1992 (Meyer, 93). Finally a systematic study
requires a textbook. Among the increasing number of books and special issues of journals appearing on the
market, we note in particular the volumes (Daubechies, 92), (Chui, 92), (Kaiser, 94) and (Mallat, 99), the
collection of review articles in (Ruskai, 92) and two special issues of IEEE journals (IEEE, 92) (IEEE, 96).

2. THE ONE-DIMENSIONAL CWT

2.1. Basic definitions

As is clear from (1.3), the CWT is a projection of the signal, in the L2 sense, onto the family {ψba, a > 0,
b ∈ R} generated from the single function ψ by translation and dilation:



S(b, a) = 〈ψba|s〉

= a−1/2

∫ ∞

−∞
ψ (a−1(x− b)) s(x) dx, (2.1)

= a1/2

∫ ∞

−∞
ψ̂(aω)ŝ(ω)eibω dω, (2.2)

where the hat denotes a Fourier transform. Thus the transform S(b, a) lives in the half-plane R2
+ = {a > 0,

b ∈ R}. The analyzing wavelet ψ satisfies a number of conditions.

(i) For the formalism to make sense, ψ(x), hence also ψ̂(ω), should be square integrable: ψ ∈ L2(R).
(ii) ψ must be admissible, that is, the following integral must converge:

cψ ≡ 2π
∫ ∞

−∞
|ψ̂(ω)|2 dω

|ω| < ∞. (2.3)

This condition implies (and for ψ regular enough, is equivalent to)

ψ̂(0) = 0, (2.4)

which in turn is equivalent to the zero mean condition (thus ψ must be oscillating):∫ ∞

−∞
ψ(x) dx = 0. (2.5)

(iii) In order to get an efficient transform (good bandpass filtering, both in space and in frequency),
ψ(x) and ψ̂(ω) should be both well localized (it suffices to require that ψ be also integrable (ψ ∈ L1∩L2),
but in practice a better localization will be useful).

(iv) In addition to (ii), ψ may be required to have a certain number of vanishing moments:∫ ∞

−∞
xn ψ(x) dx = 0, n = 0, 1, . . . N (2.6)

(this property improves the efficiency of ψ at detecting singularities in the signal, since it is blind to
polynomials up to order N).

(v) Finally, ψ is often required to be progressive, that is, ψ̂(ω) is real and ψ̂(ω) = 0 for ω ≤ 0 (such a
ψ is also called an analytic signal or a Hardy function).

We want to stress the difference between these requirements: whereas (i) and (ii) are essential for
having a CWT at all, (iii) ensures a clear interpretation, and is thus practically necessary, finally (iv)
and (v) make life easier, but are not compulsory.

As we shall see in the following sections, a wavelet ψ that satisfies these requirements generates by
(2.1) a transform Wψ : s(x) �→ S(b, a) that yields a good analysis of the signal, and allows an efficient
reconstruction S(b, a) �→ s(x) of the signal from its transform.

2.2. Two common wavelets

The two analyzing wavelets most used in practice are the Mexican hat and the Morlet wavelet.
The Mexican hat is simply the second derivative of the Gaussian,

ψH(x) = (1 − x2) e−x
2/2, ψ̂H(ω) = ω2 e−ω

2
. (2.7)

This is an admissible, real wavelet, with two vanishing moments (n = 0, 1).



−10 0 10−10 0 10

Figure 1: Two usual one-dimensional wavelets: (left) The Mexican hat or Marr wavelet; (right) The real
part of the 1-D Morlet wavelet, for ko = 5.6.

The Morlet wavelet is just a modulated Gaussian, given by

ψM (x) = eiωox e−x
2/2σ2

o + corr., ψ̂M (ω) = σoe
−[(ω−ωo)σo]2/2 + corr. (2.8)

In fact, the first term alone does not satisfy the admissibility conditions (2.4), (2.5), hence the necessity
of a correction. However, for ωo large enough (typically ωoσo ≥ 5.5), this correction term (of Gaussian
type) is numerically negligible. Notice that, without the correction term, (2.8) is just a Gabor function,
the most common function used for STFT.

The Morlet wavelet is complex, hence the corresponding transform S(b, a) is also complex, and one
may treat separately its phase and its modulus. It turns out that the phase of the transform is a crucial
ingredient for the algorithm of singularity detection in a signal, for instance, the localization of spectral
lines (Section 3).

Notice that none of these wavelets is progressive.

2.3. Localization properties and interpretation

The main virtues of the CWT follow from the support properties of ψ. Assume ψ and ψ̂ to be as well
localized as possible (compatible with the Fourier uncertainty principle). More specifically, assume that
ψ has an ‘essential’ support of width L, centered around 0, while ψ̂ has an essential support of width Ω,
centered around ωo. Then the transformed wavelets ψba and ψ̂ba have, respectively, an essential support
of width aL around b and an essential support of width Ω/a around ωo/a. This behavior is illustrated in
Figure 2, which shows the Morlet wavelet in the time and frequency domains, for three successive scales
a = 0.5, 1 and 2, from left to right.

Notice that the product of the two widths is constant. We know it has to be bounded below by a
fixed constant, by the (Fourier) uncertainty principle. We illustrate this vital fact in Figure 3, which is
a time-frequency representation. Remember that 1/a behaves like a frequency. Therefore:

• if a � 1, ψba is a wide window, whereas ψ̂ba is very peaked around a small frequency ωo/a: this
transform is most sensitive to low frequencies.

• if a � 1, ψba is a narrow window and ψ̂ba is wide and centered around a high frequency ωo/a: this
wavelet has a good localization capability in the space domain and is mostly sensitive to high frequencies.

Thus we have obtained a tool that reproduces the correlation between duration and average frequency
discussed in the introduction. Low frequency portions of the signal tend to be long, whereas high
frequencies occur briefly in general.
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Figure 2: Support properties of the Morlet wavelet ψM : for a = 0.5, 1, 2 (left to right), ψba has width 3,
6, 12, respectively (top), while ψ̂ba has width 3, 1.5, 0.75, and peaks at 12, 6, 3 (bottom).

Combining now these localization properties with the zero mean condition and the fact that ψba acts
like a filter (convolution), we see that the CWT performs a local filtering, both in time and in scale. The
wavelet transform S(b, a) is nonnegligible only when the wavelet ψba matches the signal s(x), that is, it
filters the part of the signal, if any, that lives around the time b and the scale a.

Taking all these properties together, one is naturally led to the interpretation of the CWT as a math-
ematical microscope, with optics ψ, position b and global magnification 1/a (Arnéodo, 91). In addition,
the analysis works at constant relative bandwidth (∆ω/ω = constant), so that it has a better resolution
at high frequency, i.e., small scales. This property makes it an ideal tool for detecting singularities (for
instance, discontinuities in the signal or one of its derivatives), and also scale dependent features, in
particular, for analyzing fractals (Holschneider, 88) (Arnéodo, 91).

2.4. More on the mathematical side

Given an admissible wavelet ψ, i.e., such that cψ < ∞ [see (2.3)], the corresponding CWT Wψ : s(x) �→
S(b, a) is a linear map, with the following properties:

(1) Wψ is covariant under translation and under dilation (scale change):

Wψ : s(x− xo) �→ S(a, b− xo); (2.9)

Wψ :
1√
ao
s(

x

ao
) �→ S(

a

ao
,
b

ao
); (2.10)

(2) Wψ conserves the energy of the signal:∫ ∞

−∞
|s(x)|2 dx = c−1

ψ

∫∫
R

2
+

|S(b, a)|2 da db
a2

. (2.11)
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Figure 3: Support properties of ψba and ψ̂ba.

From this condition, one sees that |S(b, a)|2 may be interpreted as an energy density in the (b, a)-half-
plane, and that the natural geometry of the latter is not the usual Euclidean one. Indeed, the measure
da db/a2 is invariant under time translation and dilation.

The relation (2.11) means that the map Wψ is an isometry from the space of signals L2(R) onto a
closed subspace of L2(R2

+, da db/a
2). An equivalent statement is that the wavelet ψ generates a resolution

of the identity:

c−1
ψ

∫∫
R

2
+

|ψba〉 〈ψba|
da db

a2
= I. (2.12)

(3) As a consequence, the map Wψ is invertible on its range, and the inverse transformation is simply
the adjoint of Wψ. Thus the signal s(x) may be reconstructed from its wavelet transform by the formula:

s(x) = c−1
ψ

∫∫
R

2
+

ψba(x)S(b, a)
da db

a2
. (2.13)

This means that the WT provides a decomposition of the signal as a linear superposition of the wavelets
ψba with coefficients S(b, a) — exactly as for the Fourier transform.

(4) The projection from L2(R2
+, da db/a

2) onto the range of Wψ, that is, the space of wavelet trans-
forms, is an integral operator, whose kernel,

K(a′, b′; a, b) = c−1
ψ 〈ψa′b′ |ψba〉 , (2.14)

is the autocorrelation function of ψ. It is also called a reproducing kernel, because the statement above
means precisely that a function f ∈ L2(R2

+, da db/a
2) is the WT of a certain signal iff it satisfies the

reproduction property:

f(a′, b′) =
∫∫

R
2
+

K(a′, b′; a, b) f(b, a)
da db

a2
. (2.15)



Remark: The relation (2.13) means that the same wavelet ψ has been used for the analysis and for
the reconstruction. This is an unnecessary restriction, however. Indeed one may reconstruct the signal
by using a wavelet χ different from the analyzing wavelet ψ (Daubechies, 92):

s(x) = c−1
χψ

∫∫
R

2
+

χba(x) (Wψs)(b, a)
da db

a2
, (2.16)

provided χ and ψ satisfy the compatibility condition

0 <
∣∣∣∣
∫ ∞

−∞
ψ̂(ω) χ̂(ω)

dω

|ω|

∣∣∣∣ < ∞. (2.17)

In this way one may obtain simpler formulas, in particular for reconstruction (as shown originally by
Morlet). The same idea, when transposed to the DWT, leads to the so-called biorthogonal wavelet bases
(see Section 5).

3. IMPLEMENTATION OF THE CWT

3.1. Academic signals

Faced with this new tool, one must begin by learning the rules of the trade, that is, one must learn how to
read and understand a CWT (Grossmann, 90). The simplest way is to get some practice on very simple
academic signals, such as a simple discontinuity in time or a monochromatic signal (pure sinusoid). Two
remarks are in order here. First, the L2 normalization used in (2.1) was chosen mainly for mathematical
reasons. It is the one for which the wavelet transform s(x) �→ S(b, a) is a unitary map. However, in
practice, this may be changed. For instance, it is common to use instead the so-called L1 normalization,
which amounts to replace the factor a−1/2 in (2.1) by a factor a−1. The effect is to enhance the small
scales, that is, to make more conspicuous the discontinuities in the signal, which is precisely one of the
aims of the WT. Second, it is natural to use a logarithmic scale for the scale parameter a. The visual
effect is that the lines, b/a = constant, are not straight lines, but hyperbolic curves; at the same time,
the horizon a = 0 recedes to (minus) infinity (see Figure 4 below).

We will now analyze the two academic signals mentioned above. The analyzing wavelet ψ is supposed
to be complex, so that we may treat separately the modulus and the phase of the transform. The scale
axis, in units of log a, points downward, so that high frequencies (small a) correspond to the top of the
plots, and low frequencies (large a) to the bottom. The results are presented by coding the height of the
function by density of points (12 levels of grays, from white to black). The phase is 2π-periodic. When
it reaches 2π, it is wrapped around to the value 0. Thus the lines of constant phase with value 2kπ are
lines of discontinuity, where the density of points drops abruptly from 1 (black) to 0 (white). In addition,
the functions plotted are thresholded at 1% of the maximum value of the modulus of S(b, a).

3.1.1 A simple discontinuity

The simplest signal is a simple discontinuity in time, at x = xo, modeled by s(x) = δ(x− xo). The WT
is obtained immediately and reads

S(b, a) = a−1/2 ψ (a−1(xo − b)). (3.1)

The following features may be read off (3.1):
• The phase of S(b, a) is constant on the lines b/a = constant, originating from the the point b = xo

on the horizon. These lines point towards the position of the singularity, like a finger.
• On the same lines of constant phase, the modulus of S(b, a) increases as a−1/2 when a → 0, so that

the singularity is enhanced. The effect is even more pronounced if one uses the L1 normalization.



Figure 4: WT of the two academic signals with the Morlet wavelet (modulus on the left, phase on the
right): (top) A δ function; (bottom) A single sinusoid.

This is illustrated on Figure 4 (top), which presents the modulus and phase of the WT of a δ function,
using a standard Morlet wavelet (but the result is independent of the choice of ψ).

These properties explain why the CWT is primarily a tool for detecting singularities in the signal
(discontinuity in s(x) or in one of its derivatives). Indeed they follow only from the fact that the δ
function is homogeneous of order −1:

δ(λ(x− xo)) =
1
λ
δ(x− xo), λ > 0, (3.2)

and they remain true for any signal which is homogeneous of order α around a given point xo:

s(λ(x− xo)) = λαs(x− xo)) for x ∼ xo, λ > 0, (3.3)

implies (using the covariance property of the CWT under dilation)

S(a, b− xo) = aα+ 1
2 S

(
1, a−1(b− xo)

)
. (3.4)

Such a homogeneous behavior, with different values of α on the left and on the right of xo, models
almost any type of discontinuity in xo (Holschneider, 95). In fact, the CWT allows also to estimate the
strength of singularities. Indeed, for such a homogeneous function (3.3), the exponent α characterizing



the singularity on the righthand side of xo may be read off a plot of log |S(b, a)| vs. log a, as b tends to
xo from the right (this is in fact a particular case of a general analysis of fractal signals through their
WT (Holschneider, 88) (Arnéodo, 91) ), and similarly from the left.

The interesting point is that this behavior is extremely robust. For instance, the ‘finger’ pointing
to a δ-singularity remains clearly visible when the latter is superposed on a continuous signal (even if
the amplitude of the δ function is too small to be visible on the signal itself), or even in the presence
of substantial background noise. Similarly, the discontinuity corresponding to the abrupt onset of a
signal is readily identified with the CWT (a situation common in seismology, for example). We refer to
(Grossmann, 90) for several spectacular examples.

3.1.2 A single monochromatic wave

Equally simple is a single harmonic signal (monochromatic wave):

s(x) = eiωsx ⇔ ŝ(ω) =
1√
2π

δ(ω − ωs), (3.5)

which gives

S(b, a) =
√

a

2π
ψ̂(aωs) eiωsb = S(a, 0) eiωsb. (3.6)

The same relations remain true for a real monochromatic signal, s(x) = sinωsx or s(x) = cosωsx, if the
wavelet ψ is progressive (ψ̂(ω) = 0 for ω ≤ 0).

Again two important properties may be read off immediately from (3.6):
• The modulus of S(b, a) is independent of b. Hence, the graph of |S(b, a)| consists of horizontal bands

and the profile for a fixed time b essentially reproduces the profile of ψ̂.
• The phase of S(b, a) is linear in b. Since the phase is 2π-periodic, the graph of Φ(b, a) ≡ argS(b, a)

is a linear sawtooth function:
Φ(b, a) = ωsb (mod 2π). (3.7)

These properties are illustrated on Figure 4 (bottom) for a single sine function analyzed with a Morlet
wavelet.

Both the modulus and the phase allow to determine the frequency ωs of the signal. If the modulus of
the wavelet ψ̂(ω) has a single maximum for ω = ωo, (3.6) gives immediately ωs = ωo/aM , where aM is the
scale corresponding to the maximum in the profile of |S(b, a)| for fixed b. For instance, the (truncated)
Morlet wavelet ψ(x) = exp(iωox) exp(−x2/2) yields:

S(b, a) =
√
a e−

1
2 (aωs−ωo)2 eiωsb, (3.8)

and the result is obvious. As for the phase, (3.7) gives, at least locally:

∂Φ(b, a)
∂b

= ωs =
ωo
aM

. (3.9)

For an asymptotic, locally monochromatic signal [see (4.5)]

s(x) = A(x) exp(iφ(x)), (3.10)

the result given in (3.9) may be recovered if one introduces the notion of instantaneous frequency:

ωinst =
∂Φ(b, a)

∂b
. (3.11)



Then it can be shown that (3.9) generalizes to:

∂Φ(b, a)
∂b

=
ωo
a
. (3.12)

The solution of (3.12) corresponds to the points where the instantaneous frequency of the signal coincides
with the frequency of the wavelet, i.e., the values of a corresponding to the peaks of the signal (center of the
spectral lines). This relation may then be further extended to a general asymptotic signal analyzed by an
asymptotic wavelet, and this leads precisely to the notion of ridge, sketched in Section 4.2 (Delprat, 92).

3.2. Physical applications

The CWT has found a wide variety of applications in various branches of physics and/or signal pro-
cessing. We will list here a representative selection; most of them may be found in the proceedings
volumes (Combes, 90), (Meyer, 91) and (Meyer, 93). In all cases, the CWT is primarily used for ana-
lyzing transient phenomena, detecting abrupt changes in a signal or comparing it with a given pattern.

• Sound and acoustics:
The first applications of the CWT were in the field of acoustics. A few examples are musical synthesis,
speech analysis and modeling of the sonar system of bats and dolphins. Other examples include various
problems in underwater acoustics, such as the disentangling of the different components of an underwater
refracted wave (Saracco, 90) and the identification of an obstacle (a submarine is a good example!).

• Geophysics:
This is the origin of the method, which was designed in an empirical fashion by J. Morlet for analyzing
the recordings of microseisms used in oil prospection. More recently, the CWT has been applied to the
analysis of various long time series of geophysical origin, e.g., in gravimetry (fluctuations of the local
gravitational field), in geomagnetism (fluctuation of the Earth’s magnetic field (Alexandrescu, 95)) or in
astronomy (fluctuations of the length of the day, variations of solar activity, measured by the sunspots,
etc.).

• Fractals, turbulence:
As mentioned above, the CWT is an ideal tool for studying fractals or, more generally, phenomena with
particular properties under scale changes. Thus it is quite natural that the CWT has found many ap-
plications in the analysis of (1-D and 2-D) fractals, artificial (diffusion limited aggregates) or natural
(arborescent growth phenomena) (Arnéodo, 91). Related to these is the use of the CWT in the anal-
ysis of developed turbulence (identification of coherent structures, uncovering of hierarchical structure)
(Farge, 92).

• Spectroscopy:
This was one of the earliest and most successful applications, in particular for NMR spectroscopy, where
the method proves extremely efficient in subtracting unwanted spectral lines or filtering out background
noise (Guillemain, 91) (Delprat, 92). We will discuss this example in more detail below.

• Medical applications:
The CWT has been used for analyzing or monitoring various electrical or mechanical phenomena in the
brain (EEG) (Thonet, 98) or the heart (ECG). See (Aldroubi, 96) for a comprehensive review.

• Industrial applications:
Here again the important aspect is monitoring, for instance in detecting anomalies in the functioning
of nuclear, electrical or mechanical installations, or analyzing the behavior of materials under impact
(Vandergheynst, 99).

• Shape recognition:
A standard problem in artificial vision is to identify an object by its shape. An interesting method
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Figure 5: Application of the CWT in NMR spectroscopy: Subtraction of an unwanted peak. (a) The
original spectrum; (b) The spectrum reconstructed after subtraction of the water peak.

consists in treating the contour of the object as a curve in the (complex) plane and analyzing its real and
imaginary components with a 1-D CWT (Antoine, 97).

Before concluding this section, we illustrate the use of the CWT by the example of NMR spectroscopy.
The physical phenomenon may be described as follows. When a sample is placed in a static magnetic
field, nuclei with a magnetic moment align along this applied field, resulting in a net magnetization. In
its equilibrium state, the magnetization is static and does not induce a signal in the receiver antenna.
In order to obtain information, one must first excite the nuclei with a radio frequency pulse. After such
a pulse, the magnetizations precess around the static field at angular frequencies characteristic of their
chemical environnement and relax to their equilibrium state. This precession induces a signal in the
receiver antenna. The signal to be analyzed is the Fourier transform (spectrum) of the damped response
curve of the protons. It contains a large number of narrow peaks, the spectral lines, but many among
them are useless, coming for instance from the protons of the solvent. These peaks, which may be quite
big, must be subtracted, and the position of the relevant ones measured with precision. In addition, the
spectra are often quite noisy, and must be ‘cleaned’ before any useful measurement can be performed.

A typical analysis of NMR spectra with help of wavelets is given in Figures 5 and 6 (Guillemain, 91)
(Delprat, 92) (Barache, 97). The first one is an example of peak subtraction. The original spectrum (left)
exhibits a huge parasite peak, due to the protons of the solvent (water), that masks to a large extent
the interesting structures. The analysis consists in isolating this peak in the CWT, subtracting it from
the spectrum and reconstructing the remaining part. The result (right) is a spectrum where all the fine
details are now clearly visible, and have not been perturbed by the removal of the large peak. Indeed,
the prominent structures appear at exactly the same place on the frequency (horizontal) axis in both
pictures. The reason for the remarkable efficiency of the method in this case is that the huge line and
the rest of the spectrum live at different scales, hence they are decoupled in the CWT (‘unfolding’) and
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Figure 6: Noise filtering with the CWT: (a) The original NMR spectrum; (b) The spectrum reconstructed
after noise removal.

can be readily separated with very little distortion.
Figure 6 is an example of noise filtering. The original signal (top) consists of a number of damped

sinusoids enbedded in noise. The dominant peaks are localized with help of the CWT ridge algorithm, the
remnant of the spectrum is subtracted and the filtered spectrum is reconstructed. The result (bottom)
compares well with standard methods of noise suppression (signal filtering).

4. DISCRETIZATION OF THE 1-D CWT

The reproduction property (2.15) implies that the information content of the CWT S(b, a) is highly
redundant. In fact the signal has been unfolded from one to two dimensions, and this explains the
practical efficiency of the CWT for disentangling parts of the signal that live at the same time, but
on different scales. This redundancy may be exploited in several ways. The principal one is that it
must be possible to obtain the full information about the signal from a small subset of the values of the
transform S(b, a). Two applications at least have been described in the literature, the theory of frames
(Daubechies, 86) and the ridge or skeleton representation (Delprat, 92).

4.1. Frames

Let Γ = {aj , bk, j, k ∈ Z} be a discrete lattice in the (b, a)-half-plane. We say that Γ yields a good
discretization for the CWT if an arbitrary signal s(x) may be represented as a superposition

s(x) =
∑
j,k∈Z

〈ψjk|s〉 ψ̃jk(x), (4.1)



where ψjk ≡ ψbkaj
and ψ̃jk may be explicitly constructed from ψjk. We emphasize that (4.1) must be

an exact representation, i.e., there is no loss of information as compared to the continuous reconstruction
(2.13). Actually (4.1) means that the signal s(x) may be replaced by the set {〈ψjk|s〉} of its wavelet
coefficients. In addition, one wants the reconstruction of s(x) from its coefficients to be numerically
stable (i.e., a small error in the coefficients implies a small error in the reconstructed signal). As shown
in (Daubechies, 86), (Daubechies, 90) and (Daubechies, 92), this is achieved provided the following con-
dition holds true, for some constants A > 0, B < ∞:

A ‖s‖2 ≤
∑
j,k∈Z

|〈ψjk|s〉|2 ≤ B ‖s‖2 (4.2)

(the lower bound guarantees the numerical stability). In that case, one says that the set {ψjk} constitutes
a frame, with frame bounds A and B (this notion was originally introduced in the 1950s, in the context
of nonharmonic analysis). If A = B > 1, the frame is said to be tight. Of course, if A = B = 1, and
‖ψ‖ = 1, the set {ψjk} is simply an orthonormal basis. The important point here is that, for all practical
purposes, a good frame is almost as good as an orthonormal basis. By ‘good frame’, we mean that the
expansion (4.1) converges sufficiently fast. The detailed analysis of Daubechies shows this to be the case
if |B/A− 1| � 1, thus in particular if the frame is tight.

Precisely at this point arises the basic difference between the discretized CWT and the DWT. In the
former case, the wavelet ψ is chosen a priori (with very few constraints, see Section 2), and the question
is whether one can find a lattice Γ such that {ψjk} is a frame with decent frame bounds A,B. In the
other approach, one imposes that the set {ψjk} be an orthonormal basis and proves the existence of a
function ψ to that effect. The construction is rather indirect and the resulting function is usually very
complicated (often it has a fractal behavior). We will discuss briefly the discrete-time WT in the next
section.

Clearly, for a given a wavelet ψ, the determination of a lattice Γ that might lead to a suitable frame
must take into account the (non-Euclidean) geometry of the time-scale half-plane. Usually, this lattice is
chosen to be invariant under discrete dilations and translations:
• for the scales, one chooses naturally aj = ajo, j ∈ Z, for some ao > 1;
• for the times, one takes bk = k bo a

j
o, j, k ∈ Z. Thus

ψjk(x) = a−j/2o ψ(a−jo x− k), j, k ∈ Z. (4.3)

The most common choice is ao = 2 (octaves!) and bo = 1, which results in

ψjk(x) = 2−j/2 ψ(2−jx− k), j, k ∈ Z. (4.4)

It is worth noticing that this so-called dyadic lattice is exactly the same that indexes the DWT (see
Section 5 below), although the two approaches are totally different.

For this choice indeed, the relevant theorems may be proven (Daubechies, 86) (Daubechies, 92). Both
the Mexican hat and the Morlet wavelet yield good frames. Actually the same question may be asked
for the STFT. There the geometry is Euclidean. Typically Γ is a square lattice and the frame theorem
simply says that a frame is obtained if the density of Γ is larger than a critical value. This is the well-
known result of von Neumann concerning the density of canonical coherent states (Klauder, 85), and it is
closely related to the standard theorem known in different circles under the names of Fourier, Heisenberg
(uncertainty relations), Nyquist or Shannon.

In conclusion, the two standard wavelets yield very good frames (nontight, however). This explains
their efficiency in signal analysis, and thus their popularity for applications. We refer to (Daubechies, 90)
(Daubechies, 92) for a detailed analytical and numerical discussion of this problem.



4.2. Ridges and skeletons

Real signals are frequently very entangled and noisy, and their WT is difficult to understand. However,
a clever exploitation of the intrinsic redundancy of the CWT is often able to bypass the difficulty and
thus to improve the efficiency and the range of applicability of wavelet analysis.

The idea is that many signals are well approximated by a superposition of spectral lines:

s(x) =
∑
n

An(x) exp(iφn(x)), (4.5)

where the amplitude An(x) varies slowly with respect to the phase φn(x). Such signals are sometimes
called asymptotic. Typical examples are spectra in NMR spectroscopy (Guillemain, 91). For a signal of
this kind, the CWT (2.1) in the time domain is a rapidly oscillating integral, the essential contribution
to which is given by the stationary points of the phase of the integrand. Assume for simplicity there
is only one such point, xs = xs(b, a). Then the ridge of the WT is defined as the set of points (b, a)
for which xs(b, a) = b. These constitute a curve in the (b, a)-half-plane and a detailed analysis shows
that, on this curve, the WT S(b, a) coincides, up to a small correction, with the analytic signal Z(b)
associated to s(x) (Delprat, 92). It follows that the restriction of the WT S(b, a) to its ridge, the so-
called skeleton, contains the whole information. In particular, the so-called frequency modulation law
x−1 arg{s(x)} of s(x) is easily recovered from the skeleton. Thus, it is not necessary to compute the whole
CWT, but only its skeleton. This is of course much less costly computationally, because there are fast
algorithms available. Spectacular applications of this method may be found, for instance, in spectroscopy
(Delprat, 92), geomagnetism (Alexandrescu, 95) or shape determination (Antoine, 97).

5. THE DISCRETE WT: ORTHONORMAL WAVELET BASES

One of the successes of the WT was the discovery that it is possible to construct functions ψ for which
{ψjk, j, k ∈ Z} is indeed an orthonormal basis of L2(R). In addition, such a basis still has the good
properties of wavelets, including space and frequency localization. In addition, it yields fast algorithms,
and this is the key to the usefulness of wavelets in many applications.

The construction is based on two facts: first, almost all examples of orthonormal bases of wavelets
can be derived from a multiresolution analysis, and then the whole construction may be transcripted into
the language of Quadrature Mirror Filters (QMF), familiar in the signal processing literature.

A multiresolution analysis of L2(R) is an increasing sequence of closed subspaces

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . , (5.1)

with
⋃
j ∈Z

Vj dense in L2(R) and
⋂
j ∈Z

Vj = {0}, and such that

(1) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

(2) There exists a function φ ∈ V0, called a scaling function, such that {φ(x−k), k ∈ Z} is anorthonormal
basis of V0.

Combining (1) and (2), one gets an orthonormal basis of Vj , namely {φj,k(x) ≡ 2j/2φ(2jx− k), k ∈ Z}.
Each Vj can be interpreted as an approximation space: the approximation of f ∈ L2(R) at the

resolution 2j is defined by its projection onto Vj , and no scale is privileged, by (1). The additional details
needed for increasing the resolution from 2j to 2j+1 are given by the projection of f onto the orthogonal
complement Wj of Vj in Vj+1:

Vj ⊕Wj = Vj+1, (5.2)

and we have: ⊕
j∈Z

Wj = L2(R). (5.3)



Then the theory asserts the existence of a function ψ, called the mother wavelet, explicitly computable
from φ, such that {ψj,k(x) ≡ 2j/2ψ(2jx − k), k ∈ Z} constitutes an orthonormal basis of Wj . Thus
{ψj,k, j, k ∈ Z} is an orthonormal basis of L2(R), and these are the orthonormal wavelets.

Various additional conditions may be imposed on the function ψ (hence on the basis wavelets): ar-
bitrary regularity, several vanishing moments (in any case, ψ has always zero mean), fast decrease at
infinity, even compact support. The technique consists in translating the multiresolution structure into
the language of QMF filters, and putting suitable constraints on the filter coefficients. For instance, ψ has
compact support if only finitely coefficients differ from zero (in technical terms, one has an FIR filter).

The simplest example of this construction is the Haar basis, which comes from the scaling function
φ(x) = 1 for 0 ≤ x < 1 and 0 otherwise. Similarly, various spline bases may be obtained along the same
line. Other explicit examples may be found in (Chui, 92) or (Daubechies, 92).

Although appropriate filters generate orthonormal wavelet bases, the resulting scheme turns out to
be too rigid for many applications and various generalizations have been proposed.

(i) Biorthogonal wavelet bases:
As we mentioned at the end of Section 2.4, the wavelet used in the CWT for reconstruction need not be
the same as that used for decomposition, the two have only to satisfy a cross-compatibility condition. The
same idea in the discrete case leads to biorthogonal bases, i.e., one has two hierarchies of approximation
spaces, Vj and V̂j , with cross-orthogonality relations. This gives a better control, for instance, on the
regularity or decrease properties of the wavelets (Cohen, 92).

(ii) Wavelet packets:
The construction of orthonormal wavelet bases leads to a special subband coding scheme, rather asym-
metrical. Each approximation space Vj gets further decomposed into Vj−1 and Wj−1, whereas the detail
space Wj is left unmodified. More flexible subband schemes have been considered, called wavelet packets;
they provide rich libraries of orthonormal bases, and also strategies for determining the optimal basis in
a given situation (Coifman, 93).

(iii) Second generation wavelets:
One can go further and abandon the regular dyadic scheme and the Fourier transform altogether. Using
the ‘lifting scheme’, one obtains the so-called second-generation wavelets (Sweldens, 96). The same scheme
applies in 2-D as well. For instance, Schröder and Sweldens (Schröder, 95) have applied it to the design
of wavelets on the sphere, with a very convincing application to the reproduction of coastlines on a
terrestrial globe.

(iv) Integer wavelet transforms:
In their standard numerical implementation, the classical (discrete) WT converts floating point numbers
into floating point numbers. However, in many applications (data transmission from satellites, multi-
media), the input data consists of integer values only and one cannot afford to lose information: only
lossless compression scheme are allowed. Recent developments have produced new methods that allow
one to perform all calculations in integer arithmetic (Calderbank, 98).

Of course, the literature on the DWT and its applications is growing fast. Besides the classical book
(Daubechies, 92), it may be useful to mention several books, which are specifically designed for signal
processing, for instance, (Akansu, 95), (Mallat, 99), (Strang, 96), (Vetterli, 95) or (Wickerhauser, 94).

6. HOW TO GENERALIZE THE 1-D CWT?

As we have seen in Section 2, the natural geometry of the (b, a)-half-plane R2
+ is not the usual Euclidean

one. Indeed the measure da db/a2 is invariant not only under time translation, but also under dilation.
The reason behind these facts and the nice properties described above is to be found in group represen-
tation theory. The natural operations on a 1-D signal are precisely time translations and dilations, and
these together constitute the ax+ b group, that is, the connected affine group Gaff of the line. Then the



relation
(U(b, a)f)(x) ≡ fba(x) = a−1/2 f(a−1(x− b)), a > 0, b ∈ R, (6.1)

defines a unitary representation of Gaff in the Hilbert space L2(R, dx) of finite energy signals. This
means that, for every g ≡ (b, a) ∈ Gaff , U(g) is a unitary operator and one has, for any g, g′ ∈ Gaff ,
U(g)U(g′) = U(gg′), U(g−1) = U(g)†, and thus U(e) = I, where e = (1, 0) denotes the unit element of
Gaff .

The representation U becomes irreducible when restricted to the subspace of progressive signals H+ =
{f ∈ L2(R, dx), f̂(ω) = 0 for ω ≤ 0}, that is, H+ contains no subspace invariant under U , except the
trivial one {0}. Furthermore, and this is the crucial feature, the restricted representation U+ is square
integrable, that is, there exists at least one (and in fact a dense set of) admissible vectors, i.e., vectors
ψ such that the matrix element 〈U+(b, a)ψ|ψ〉 is square integrable over the group, with respect to the
(left) invariant measure, namely da db/a2. Then a straightforward calculation shows that the squared
norm of that matrix element is proportional to the constant cψ given in (2.3). Thus the two notions of
admissibility we have introduced indeed coincide.

From this fact follow all the mathematical properties described in Section 2.4, covariance, energy
conservation (2.11), inversion formula (2.13), reproducing kernel (2.15). This is of course no accident! It
simply reflects the fact that the 1-D CWT is a particular case of the general theory of coherent states
associated to group representations (Ali, 95) (Ali, 99). This observation is of central importance, for it
is this approach that allows a natural and easy extension of the 1-D CWT to higher dimensions.

How does this come about? Where does the appropriate group come from? The answer lies in the
notion of symmetry, which plays such a prominent part in the whole of physics. Suppose indeed that the
signal possesses certain symmetry properties. It is natural to build these into the wavelet transform itself,
and this clearly requires the use of the continuous approach. What emerges here is a general pattern,
that we now describe.

Consider the class of finite energy signals living on a manifold Y , i.e., s ∈ L2(Y, dµ) ≡ H. For instance,
Y could be space Rn, the 2-sphere S2, space-time R × R or R2 × R, etc. Suppose there is a group G of
transformations acting (transitively) on Y : y �→ g[y], with g[g′[y]] = gg′[y], e[y] = y, and for any pair
y, y′ ∈ Y, there is at least one g ∈ G such that g[y] = y′. Then we may let the group G act linearly on
signals, s �→ U(g)s, and consistency requires that U should be a unitary representation of G in the space
H of signals:

〈U(g)s|U(g)s′〉 = 〈s|s′〉, ∀ g ∈ G, s, s′ ∈ H. (6.2)

In order to get a wavelet analysis on Y , adapted to the symmetry group G, three conditions must be
met: (1) G contains dilations of some kind; (2) U is irreducible; and (3) U is square integrable, i.e., there
exists at least one nonzero vector ψ ∈ H, called admissible, such that the matrix element 〈U(g)ψ|ψ〉 is
square integrable as a function on G.

Under these three conditions, a G-adapted wavelet analysis on Y may be constructed, following the
general construction of coherent states on Y associated to G (Ali, 95) (Ali, 99).

Choose a fixed admissible vector ψ ∈ H as analyzing wavelet (normalized to cψ = 1 for convenience).
Then the wavelets are the vectors ψg = U(g)ψ ∈ H (g ∈ G), and the corresponding continuous wavelet
transform (CWT) is defined as the linear map Wψ : H → L2(G, dg) given by (Wψs)(g) ≡ Sψ(g) = 〈ψg|s〉
(dg denotes the left invariant measure on G). The CWT has the following properties:

(1) Energy conservation: ∫
G

|Sψ(g)|2 dg =
∫
Y

|s(y)|2 dµ(y), (6.3)

i.e., Wψ is an isometry (in other words, it generates a resolution of the identity); hence its range, the
space of wavelet transforms, is a closed subspace Hψ of L2(G, dg).



(2) By (1), Wψ may be inverted on its range by the transposed map, which gives the reconstruction
formula:

s(y) =
∫
G

Sψ(g)ψg(y) dg. (6.4)

(3) The projection from L2(G, dg) onto Hψ is an integral operator with kernel K(g, g′) = 〈ψg|ψg′〉,
that is, the auto-correlation function of ψ, also called a reproducing kernel; in other words, a function
f ∈ L2(G, dg) is a WT iff it satisfies the reproducing relation:

f(g) =
∫
G

〈ψg|ψg′〉f(g′) dg′. (6.5)

(4) The CWT is covariant under the action of the group G:

Wψ[U(g)s](go) = (Wψs)(g−1go), ∀ g ∈ G. (6.6)

Moreover, if the analyzing wavelet ψ has a nontrivial stability subgroup Hψ (even up to a phase),
the whole construction may be performed under a slightly less restrictive condition (the representation
U need only to be square integrable on the coset space X = G/Hψ), and yields wavelets indexed by the
points of X. We will encounter this situation both in the 2-D and in the 3-D case. One may even allow
the parameter space to be a general coset space X = G/H, but then technical difficulties arise. We refer
the reader to (Ali, 95) (Ali, 99) for a thorough discussion of this extended theory.

This formalism is general enough to design a symmetry-adapted CWT in all cases of physical interest,
while, of course, reproducing the familiar 1-D CWT. First, one should notice that the Weyl-Heisenberg
group, which consists of phase space translations (translations and modulations), yields the STFT (the
corresponding wavelets are called gaborettes in the wavelet community, while quantum physicists call
them canonical coherent states (Klauder, 85) (Ali, 95) (Ali, 99)). In the following sections, we will apply
this technique and obtain the extension of the CWT to 2 and 3 space dimensions, to space-time (time-
dependent signals or images, such as TV or video sequences), including relativistic effects (using wavelets
associated to the affine Galilei or Poincaré group) and the 2-sphere (a tool most wanted by geophysicists).

7. THE CWT IN TWO DIMENSIONS

According to the discussion above, the first thing to do for extending the CWT to 2-D case, is to identify
the relevant transformation group and a suitable representation in the space of signals. The discussion
below follows (Antoine, 99a), where further details may be found.

7.1. Mathematical properties

By an image, we mean a 2-D signal of finite energy, represented by a complex-valued, square integrable
function s ∈ L2(R2, d2x). This condition may be relaxed, to allow, for instance, a plane wave or a δ
function. In practice, a black and white image will be represented by a bounded non-negative function:
0≤ s(x)≤M, ∀x ∈ R2 (M > 0), the discrete values of s(x) corresponding to the level of gray of each
pixel.

All the operations we will apply to a signal s are obtained by combining three elementary transforma-
tions of the plane, namely, translations, dilations and rotations. These transformations are represented
by the following unitary operators in the space L2(R2, d2x) of finite energy signals:

(1) translation : (T bs)(x) = s(x − b), b ∈ R2,

(2) dilation : (Das)(x) = a−1s(a−1x), a > 0,
(3) rotation : (Rθs)(x) = s(r−θ(x)), θ ∈ [0, 2π),



where b ∈ R2 is the translation parameter, a > 0 the dilation parameter, θ the rotation angle and the
rotation rθ ∈ SO(2) acts on x = (x, y) as usual :

rθ(x) = (x cos θ − y sin θ, x sin θ + y cos θ), 0 ≤ θ < 2π. (7.1)

Combining now the three operators, we define the unitary operator U(b, a, θ) = T bDaRθ, which acts on
a given function s as:

(U(b, a, θ)s)(x) ≡ sb,a,θ(x) = a−1 s(a−1 r−θ(x − b)), (7.2)

or, equivalently, in the space of Fourier transforms:

ŝb,a,θ(k) = a e−ib·k ŝ(ar−θ(k)). (7.3)

Clearly we are following the general pattern described in Section 6. The three operations of translation,
(global) dilation and plane rotation constitute the similitude group of the plane, G ≡ SIM(2) = R2 �

(R+
∗ ×SO(2)) (� denotes a semidirect product), U is the natural representation of SIM(2) in the Hilbert

space L2(R2), and it is unitary, irreducible and square integrable. The admissibility condition for a
wavelet ψ ∈ L2(R2) reads:

cψ ≡ (2π)2
∫

|ψ̂(k)|2 d2k

|k|2 < ∞. (7.4)

If ψ is regular enough (ψ ∈ L1(R2) ∩ L2(R2) suffices), the admissibility condition simply means that the
wavelet has zero mean:

ψ̂(0) = 0 ⇐⇒
∫

ψ(x) d2x = 0. (7.5)

Clearly the three unitary operators T b, Da, Rθ preserve the admissibility condition, and so does therefore
U(b, a, θ). Hence, any function ψb,a,θ = U(b, a, θ)ψ obtained from a wavelet ψ by translation, rotation
or dilation is again a wavelet. Thus the given wavelet ψ generates the whole family {ψb,a,θ}, indexed by
the elements (b, a, θ) ∈ SIM(2), and the linear span of this family is dense in L2(R2).

Now we have only to follow the general scheme of Section 6. Given an image s ∈ L2(R2), its WT with
respect to the wavelet ψ is:

S(b, a, θ) = 〈ψb,a,θ|s〉

= a−1

∫
ψ(a−1r−θ(x − b)) s(x) d2x. (7.6)

= a

∫
eib·k ψ̂(ar−θ(k)) ŝ(k) d2k. (7.7)

The wavelet ψ ∈ L2(R2) and its Fourier transform ψ̂ are both supposed to be well localized. In addition,
ψ is often required to have a certain number of vanishing moments.

Then we may summarize as follows the main properties of the wavelet transform Wψ : s �→ S:
• Wψ conserves the energy of the signal:

c−1
ψ

∫∫∫
|S(b, a, θ)|2 da

a3
dθd2b =

∫
|s(x)|2 d2x, (7.8)

where dg ≡ a−3dadθd2b is the natural invariant measure on SIM(2).
• Reconstruction formula:

s(x) = c−1
ψ

∫∫∫
ψb,a,θ(t)S(b, a, θ)

da

a3
dθ d2b . (7.9)



In other words, the 2-D CWT provides a decomposition of the signal in terms of the analyzing wavelets
ψb,a,θ, with coefficients S(b, a, θ). As in 1-D, one can also reconstruct the signal by resumming only over
scales:

s(x) ∼
∫

S(a,x)
da

a2
. (7.10)

• Reproducing kernel:
K(b′, a′, θ′|b, a, θ) = c−1

ψ 〈ψb′,a′,θ′ |ψb,a,θ〉, (7.11)

and corresponding reproduction property:

S(b′, a′, θ′) =
∫∫∫

K(b′, a′, θ′|b, a, θ) S(b, a, θ)
da

a3
dθ d2b. (7.12)

• Wψ is covariant under translations, dilations and rotations (Murenzi, 90a) (Murenzi, 90b).

7.2. The various representations

The first problem one faces in practice is one of visualization. Indeed, S(b, a, θ) is a function of four
variables, two position variables b ∈ R2, and the pair (a, θ) ∈ R+

∗ × [0, 2π) � R2
∗. It turns out that

this splitting has an intrinsic geometrical meaning. Indeed, it can be shown (Antoine, 93) (Antoine, 96)
that the pair (a−1, θ) plays the role of spatial frequency, expressed in polar coordinates, and so the full
four-dimensional parameter space of the 2-D WT may be interpreted as a phase space, in the sense of
classical mechanics.

Now, to compute and visualize the full CWT in all four variables is hardly possible. Therefore, in order
to obtain a manageable tool, some of the variables, a, θ, bx, by must be frozen. In other words, one must
restrict oneself to a section of the parameter space. The geometrical considerations made above indicate
that two of them are more natural: Either (a, θ) or (bx, by) are fixed, and the WT is treated as a function
of the two remaining variables. The corresponding representations are called position representation
and the scale-angle representation, respectively. Whereas the former is useful for the general purpose of
image processing, the latter is particularly interesting whenever scaling behavior (as in fractals) or angular
selection is important, for instance, when directional wavelets are used. In fact, both representations are
needed for a full understanding of the properties of the CWT in all four variables, and the reproducing
kernel K should be studied in both (see Section 7.4 below and (Antoine, 93) (Antoine, 96)).

For the numerical evaluation, discretization of the WT in any of these representations, and systematic
use of the FFT algorithm will lead to a numerical complexity of 3N1N2 log(N1N2), where N1, N2 denote
the number of sampling points in the two remaining variables.

Whichever representation we use, we end up with a function of two variables, which may be real or
complex. In the latter case, it will be often represented through its modulus and phase. It turns out that
the phase is particularly instructive, as was already the case in 1-D. We refer to (Antoine, 93) for a more
detailed discussion.

7.3. Choice of the analyzing wavelet

The next step is to choose an analyzing wavelet ψ. As this point, there are two possibilities, depending
on the problem at hand.

(i) Isotropic wavelets:
If one wants to perform a pointwise analysis, that is, when no oriented features are present or relevant
in the signal, one may choose an analyzing wavelet ψ which is invariant under rotation. Then the θ
dependence drops out, for instance, in the reconstruction formula (7.9) (in the mathematical formulation
of Section 6, the isotropy subgroup of ψ is Hψ = SO(2) and one gets X = R2 × R+

∗ ). A typical example
is the isotropic 2-D Mexican hat wavelet.



(ii) Anisotropic wavelets:
When the aim is to detect directional features in an image, for instance, to perform directional filtering,
one has to use a wavelet which is not rotation invariant (Hψ trivial). The best angular selectivity will
be obtained if ψ is directional, which means that its (essential) support in spatial frequency space is
contained in a convex cone with apex at the origin. Typical directional wavelets are the 2-D Morlet
wavelet or the Cauchy wavelets (Antoine, 96) (Antoine, 99c).

Let us in more detail examine some examples of wavelets of each kind.

7.3.1 Isotropic wavelets

• The 2-D Mexican hat or Marr wavelet:
In its isotropic version, this is simply the Laplacian of a Gaussian:

ψH(x) = (2 − |x|2) exp(− 1
2 |x|

2). (7.13)

This is a real, rotation invariant wavelet, originally introduced by Marr (Marr, 82). There exists also an
anisotropic version, obtained by replacing in (7.13) x by Ax, where A = diag[ε−1/2, 1], ε ≥ 1, is a 2 × 2
anisotropy matrix. However, this wavelet is of little use in practice, because it is still not a directional
wavelet, in the technical sense defined below. Hence the Mexican hat will be efficient for a fine pointwise
analysis, but not for detecting directions.

• Difference wavelets:
An interesting class consists of wavelets obtained as the difference of two positive functions, for instance a
single function h and a contracted version of the latter. If h is a smooth nonnegative function, integrable
and square integrable, with all moments of order one vanishing at the origin, then the function ψ given
by the relation :

ψ(x) = α−2 h(α−1x) − h(x) (0 < α < 1) (7.14)

is easily seen to be a wavelet satisfying the admissibility condition (7.5). A typical example is the
Difference-of-Gaussians or DOG wavelet, obtained by taking for h a Gaussian

ψD(x) = α−2 e−|x|2/2α2 − e−|x|2/2, (0 < α < 1). (7.15)

The DOG filter is a good substitute for the Mexican hat (for α−1 = 1.6, their shapes are extremely
similar), frequently used in psychophysics works (De Valois, 88) (Duval-Destin, 91). Notice that h, and
thus also ψ, need not be isotropic.

7.3.2 Directional wavelets

If one wants to detect oriented features (segments, edges, vector field,. . . ), one needs a wavelet which
is directionally selective. To be precise, we will say that a given wavelet ψ is directional if the effective
support of its Fourier transform ψ̂ is contained in a convex cone in spatial frequency space {k}, with
apex at the origin.

According to this definition, the anisotropic Mexican hat is not directional, since the support of ψ̂H is
centered at the origin, no matter how big its anisotropy is, as can be seen on Figure 7. Indeed, detailed
tests confirm its poor performances in selecting directions (Antoine, 93).

• The 2-D Morlet wavelet
This is the prototype of a directional wavelet:

ψM(x) = exp(iko · x) exp(− 1
2 |Ax|2), ψ̂M(k) =

√
ε exp

(
− 1

2 [εk2
x + (ky − ko)2]

)
. (7.16)

The parameter ko is the wave vector, and A the anisotropy matrix as above. As in 1-D, we should
add a correction term to (7.16) to enforce the admissibility condition ψ̂M(0) = 0. However, since it is



numerically negligible for |ko| ≥ 5.6, we have dropped it altogether. The modulus of the (truncated)
wavelet ψM is a Gaussian, elongated in the x direction if ε > 1, and its phase is constant along the
direction orthogonal to ko. Thus the wavelet ψM smoothes the signal in all directions, but detects the
sharp transitions in the direction perpendicular to ko. The angular selectivity increases with |ko| and
with the anisotropy ε. The best selectivity will be obtained by combining the two effects, i.e., by taking
ko = (0, ko). The function ψ̂M , with ε = 5 and rotated by θ = 45o, is shown (in level curves) in Figure
7 . Its effective support is centered at ko and is contained in a convex cone, that becomes narrower as ε
increases.

• Conical or Cauchy wavelets:
In order to achieve a genuinely oriented wavelet, it suffices to consider a smooth function ψ̂S(k) with
support in a strictly convex cone S in spatial frequency space and behaving inside S as P (kx, ky)e−(α·k),
with α ∈ S, or P (kx, ky)e−|k|2 , where P (.) denotes a polynomial in two variables. Examples of the first
type are given in (Antoine, 96) (Antoine, 99c), under the name of Cauchy wavelets.

7.4. Performance evaluation of the 2-D CWT

Given a wavelet, what are its angular and scale selectivity (resolving power)? What is the minimal
sampling grid for the reconstruction formula (7.9) that guarantees that no information is lost? The
answer to both questions resides in a quantitative knowledge of the properties of the wavelet, that is, the
tool must be calibrated.

To that effect, one takes the WT of particular, standard signals. Three such tests are useful, and
in each case the outcome may be viewed either at fixed (a, θ) (position representation) or at fixed b
(scale-angle representation).

• Point signal: for a snapshot at the wavelet itself, one takes as the signal a δ function, i.e., one
evaluates the impulse response of the filter:

〈ψb,a,θ|δ〉 = a−1 ψ(a−1r−θ(−b)). (7.17)

• Benchmark signals: for testing particular properties of the wavelet, such as its ability to detect
a discontinuity or its angular selectivity in detecting a particular direction, one may use appropriate
‘benchmark’ signals.

• Reproducing kernel: taking as the signal the wavelet ψ itself, one obtains the reproducing kernel K,
which measures the correlation length in each variable b, a, θ :

cψ K(b, a, θ|1, 0,0) = 〈ψb,a,θ|ψ〉 = a−1

∫
ψ(a−1r−θ(x − b)) ψ(x) d2x. (7.18)

A detailed analysis of K yields a definition of the resolving power of the wavelet ψ in each variable,
and the result fits perfectly with empirical definitions (Antoine, 93).

7.4.1 Calibration of a wavelet with benchmark signals

As we said above, particular properties of the wavelet may be tested on appropriate benchmark signals.
For instance, its capacity at detecting a discontinuity may be measured on the signal consisting of an
infinite rod (see (Antoine, 93) for the full discussion). The result is that both the Mexican hat and the
Morlet wavelet are efficient in this respect.

For testing the angular selectivity of a wavelet, one computes the WT of a semi-infinite rod, as a
function of the difference in orientation, ∆θ, between the wavelet and the rod. First a Morlet wavelet
ψM with excentricity ε = 5 detects the orientation of a rod with a precision of the order of 5◦. That is,
the WT of the rod is a “wall” of constant height as long as ∆θ is smaller than 5◦. For increasing ∆θ, the



Figure 7: Frequency space realization of two basic wavelets (ε = 5, θ = 45o): (left) The anisotropic
Mexican hat ψ̂H ; (right) The Morlet wavelet ψ̂M .

wall gradually collapses, and essentially disappears for ∆θ > 15◦. Only the tip of the rod remains visible,
and for large ∆θ, it gives a sharp peak (it is a point singularity). Essentially the same result is obtained
with a Cauchy wavelet supported in a cone of opening angle 20◦, whereas the same test performed with
an anisotropic Mexican hat gives a result almost independent of ∆θ. The conclusion is that the Morlet
and the Cauchy wavelets are highly sensitive to orientation, but the Mexican hat is not.

Let us illustrate these features by two academic examples, both of which have direct physical appli-
cations.

(a) Detection of contours with the Mexican hat:
Exactly as in the 1-D case, the WT is especially useful to detect discontinuities in images, for instance the
contour or the edges of an object (Murenzi, 90b) (Antoine, 93). For that purpose, an isotropic wavelet
may be chosen, such as the radial Mexican hat ψH given in (7.13). In that case the effect of the WT
consists in smoothing the signal with a Gaussian and taking the Laplacian of the result. Thus large values
of the amplitude will appear at the location of the discontinuities, in particular the contour of objects
(which is a discontinuity in luminosity).

In order to test this property, we may compute the WT of a simple object, such as a square or a
set with the shape of a thick letter, represented by its characteristic function, for various values of the
scale parameter a. Then, for large values of a, the WT sees only the object as a whole, thus allowing the
determination of its position in the plane. When a decreases, increasingly finer details appear. In this
simple case, the WT vanishes both inside and outside the contour, since the signal is constant there, and
thus only the contour remains. Of course, if one takes values of a that are too small, numerical artifacts
(aliasing) appear and spoil the result. It should be noted that the corners of the figure are highlighted in
the WT by sharp peaks. The amplitude is larger at these points, since the signal is singular there in two
directions, as opposed to the edges. In addition the WT detects the convexity of each corner. Convex
corners give rise to positive peaks, whereas concave ones yield a negative peak. Here we see the advantage
of using a real wavelet and plotting the WT itself, not its modulus, which is a frequent practice.

(b) Directional filtering with a Morlet or a Cauchy wavelet:
As a consequence of their good directional selectivity, the Morlet and the Cauchy wavelets are quite

efficient for directional filtering. In order to illustrate the point, we analyze in Figure 8 a pattern made of
rods in many different directions (a). Applying the CWT with a fixed direction, here horizontal, selects
all those rods with roughly the same direction (b), wheras the other ones, which are misaligned, yield
only a faint signal corresponding to their tips, in agreement with the behavior discussed above. Since
this is in fact noise, one performs a thresholding to remove it, thus getting a clear picture (c). The same



Figure 8: Directional filtering with the CWT: (a) The pattern; (b) CWT with a Cauchy wavelet supported
in C(−10◦, 10◦) (c) The same after thresholding.

two operations are then repeated with various successive orientations of the wavelet. In this way, one can
count the number of objects that lie in any particular direction.

7.5. Physical applications of the 2-D CWT

The 2-D CWT has been used by a number of authors, in a wide variety of physical problems (Combes, 90)
(Meyer, 91) (Meyer, 93). In all cases, its main use is for the analysis of images. It can be used for the
detection of specific features, such as a hierarchical structure, edges, filaments, contours, boundaries
between areas of different luminosity, etc. Of course, the type of wavelet chosen depends on the precise
aim. An isotropic wavelet (Mexican hat) suffices for pointwise analysis, but an oriented wavelet (Morlet,
Cauchy) is more efficient for the detection of oriented features in the signal, that is, regions where the
amplitude is regular along one direction and has a sharp variation along the perpendicular direction.

Among the most successful applications, we may select the following ones.
• Analysis of astronomical images:

The CWT has been used for several purposes: noise filtering (background sky), with a technique known
is astronomy as ‘unsharp masking’, unraveling of the hierarchical structure of a galactic nebula, or that
of the universe itself (galaxy counts, detection of galaxy clusters or voids).

• Analysis of 2-D fractals:
Fractals, either artificial (numerical snowflakes, diffusion limited aggregates) or natural (electrodeposition
clusters, various arborescent phenomena, clouds) have been thoroughly investigated with the 2-D CWT
(Argoul, 90) (Arnéodo, 91); here the (a, θ) representation is useful, since it presents the signal at all scales
at once. Particular applications include the measurement of the fractal dimensions and the unraveling of
universal laws (mean angle between branches, azimuthal Cantor structures, etc.).

• Turbulence in fluid dynamics:
Analysis of 2-D developed turbulence in fluids, especially localization of small scales in the distribution
of energy or enstrophy (Farge, 92). Other applications in fluid dynamics include the visualization and
measurement of a velocity field with help of an oriented wavelet (see the discussion below).

• Medical physics and psychophysics:
Modelling of human vision, e.g., definition of local contrast in images (Duval-Destin, 91), medical imaging,
in particular 2-D NMR imaging and tomography.

• Determination of local regularity of a signal:
The tool here is the estimation of local Lipschitz exponents (Mallat, 92).



Among the applications of 2-D wavelets in fluid dynamics, we would like to mention two, which both
rely on the possibility of directional filtering with directional wavelets. The first one is a straightforward
application of the method described in Section 7.4.1 (Wisnoe, 93a) (Wisnoe, 93b). The aim is to measure
the velocity field of a 2-D turbulent flow around an obstacle. Velocity vectors are materialized by small
segments (tiny plastic balls are injected into the stream and photographed with a fast CCD camera).
Then the WT with a Morlet wavelet is computed twice. First the WT selects those vectors that are
closely aligned with the wavelet. Then the analysis is repeated with a wavelet oriented in the orthogonal
direction, thus completely misoriented with respect to the selected vectors. Now the WT sees only the
tips of the vectors and their length may be easily measured. Using appropriate thresholdings, as in Figure
8, and repeating the operation a certain number of times, with the wavelet rotated each time by a fixed
angle (typically 10◦), the complete velocity field may thus be obtained, in a totally automated fashion,
with an efficiency sensibly better than with more traditional methods.

A second example concerns the disentangling of a wave train, represented by a linear superposition
of damped plane waves. The problem originates from underwater acoustics. When a point source emits
a sound wave above the surface of water, the wave hitting the surface splits into several components of
very different characteristics (called respectively direct, lateral and transient). The goal is to measure
the parameters of all components. This phenomenon has been analyzed successfully with the WT both
in 1-D (Saracco, 90) and in 2-D (Antoine, 96). In the latter case, the signal representing the underwater
wave train is taken as a linear superposition of damped plane waves:

f(x) =
N∑
n=1

cn e
ikn·x e−ln·x, (7.19)

where, for each component, kn is the wave vector, ln is the damping vector, and cn a complex amplitude.
Then, using successively the scale-angle and the position representations, one is able to measure all the
6N parameters of this signal with remarkable ease and precision. And the extension to a 3-D version is
straightforward.

7.6. The 2-D discrete WT

In fact, the first extension of wavelet analysis to 2-D signals was proposed by Mallat (Mallat, 89a)
(Mallat, 89b), who developed systematically the 2-D discrete WT. This generalization is indeed a very
natural one, if one realizes that the whole idea of multiresolution analysis lies at the heart of human
vision. In fact, most of the concepts are indeed already present in the pioneering work of Marr (Marr, 82)
on vision modelling. As in 1-D, this discrete WT has a close relationship with numerical filters (QMFs
and their generalizations) and related techniques of signal analysis, such as subband coding. It has
been applied successfully to several standard problems of image processing. As a matter of fact, all the
approaches that we have mentioned above in the 1-D case have been extended to 2-D: orthonormal bases,
biorthogonal bases, wavelet packets, lifting scheme.

However, the 2-D DWT suffers from intrisic limitations, because it is essentially linked to a Cartesian
geometry (except for the lifting scheme). Indeed, a 2-D multiresolution is simply the tensor product of two
1-D schemes, one for the horizontal direction and one for the vertical direction (in technical terms, one uses
only separable filters). And one needs three different analyzing wavelets, corresponding to horizontal,
vertical and oblique details, respectively. More isotropic schemes have been designed, based on more
complicated dilation operations, such as the so-called ‘quincunx’ lattice (see for instance (Kovačević, 92)).
Yet the CWT remains more flexible, especially for detecting oriented features in an image, for instance,
in the classical problem of edge detection. Of course, many applications require only a pointwise analysis
(fractals are typical), hence the 2-D WT is often used as a ‘mathematical microscope’, like in 1-D, thus
ignoring directions. But if directions are important, the full CWT, including the orientation parameter
θ, should be used, and it is a very efficient tool in this respect, provided one uses a wavelet which has
itself an intrinsic orientation, that is, a directional wavelet.



8. THE CWT IN HIGHER DIMENSIONS

8.1 The 3-D case

Some physical phenomena are intrinsically multiscale and three-dimensional. Typical examples may be
found in fluid dynamics, for instance the appearance of coherent structures in turbulent flows, or the
disentangling of a wave train in (mostly underwater) acoustics, as discussed above. In such cases, a 3-D
wavelet analysis is clearly more adequate and likely to yield a deeper understanding (Astruc, 93). Hence
we will also describe briefly the 3-D CWT, following again the pattern of Section 6.

Given a 3-D signal s ∈ L2(R3, d3x),with finite energy, one may act on it by translation, dilation and
rotation:

sa,γ,b(x) ≡ [U(a, r(γ), b)s](x) = a−
3
2 s(a−1r(γ)−1(x − b)), (8.1)

where a > 0, γ ∈ SO(3), b ∈ R3 and r(γ) ∈ SO(3) is a 3×3 rotation matrix. The element γ ∈ SO(3) may
be parametrized, for instance, in terms of three Euler angles. These three operations generate the 3-D
Euclidean group with dilations, that is, the similitude group of R3, SIM(3) = R3 � (R+

∗ × SO(3)). Then
(8.1) is a unitary representation of SIM(3) in L2(R3, d3x), which is irreducible and square integrable.
Hence, it generates a CWT exactly as before.

Wavelets are taken in L2(R3, d3x) and the admissibility condition is now∫
|ψ̂(k)|2 d3k

|k|3 < ∞. (8.2)

Also the two familiar wavelets have a 3-D realization.
• The 3-D Mexican hat is given by

ψH(x) = (3 − |Ax|2) exp(− 1
2 |Ax|2). (8.3)

where A = diag[ε1−1/2, ε2
−1/2, 1], ε1 ≥ 1, ε2 ≥ 1, is a 3×3 anisotropy matrix. We distinguish three cases:

(1) If ε1  = ε2  = 1, one has the fully anisotropic 3-D Mexican hat. Here, Hψ is trivial.
(2) If ε1 = ε2 = 1, one has the isotropic, SO(3)-invariant, 3-D Mexican hat. Now, Hψ = SO(3).
(3) If ε1 = ε2 ≡ ε  = 1, the wavelet is axisymmetric, i.e., SO(2)-invariant, but not isotropic, so that

Hψ = SO(2).
• The 3-D Morlet wavelet is given by

ψ(x) = exp(iko · x) exp(− 1
2 |Ax|2), (8.4)

where A is the same 3× 3 anisotropy matrix as in the first example. Here again, for ε1 = ε2 ≡ ε  = 1 and
ko along the z-axis, the wavelet ψ is invariant under SO(2).

Then, given a signal s ∈ L2(R3), its CWT with respect to the admissible wavelet ψ is given as

S(b, a, γ) = a−3/2

∫
ψ(a−1r(γ)−1(x − b)) s(x) d3x. (8.5)

As compared with (7.6), the only differences are in the normalization factors and the rotation matrices.
Since the structure of the formulas is the same as before, so are the interpretation and the consequences
(local filtering, reproducing kernel, reconstruction formula, etc.). Thus the CWT (8.5) may be interpreted
as a mathematical camera with magnification 1/a, position b and directional selectivity, given, in the
axisymmetric case, by the rotation parameters ; ≡ (θ, ϕ). As for the visualization, the full CWT
S(a, γ, b) is a function of 7 variables. However, if the wavelet ψ is chosen axisymmetric, i.e., SO(2)-
invariant, S depends on 6 variables only, a > 0, ; ∈ S2 � SO(3)/SO(2), the unit sphere in R3, and
b ∈ R3. In this case again, (a−1, ;) may be interpreted as polar coordinates in spatial frequency space



(this is in fact true in any number of dimensions). It follows that, here too, there are two natural
representations for the visualization of the WT, the position representation (a,; fixed) and the scale-
orientation (or spatial frequency) representation (b fixed). Of course, there are many other posssible
representations that may be useful.

In conclusion, let us discuss briefly a simple example, the detection of 3-D objects in a cluttered
medium. We consider a scene with 3-D objects (targets) immersed in a cluttered medium, modeled by
the signal:

s(x) =
N∑
m=1

sm(x) + n(x), (8.6)

where sm(x) denotes the density of the target m, and n(x) the density of the medium.
Since the density of the targets is very different from that of the medium, there will be a high density

gradient at the boundary between the objects and the medium. In this situation, the wavelet transform
S(b, a, θ, ϕ) may be used to extract the 3-D objects and determine their characteristics, position (range
and orientation) and spatial frequency. Further details may be found in (Antoine, 95b), where a detailed
strategy is explained for the 2-D version of the same problem.

8.2 Wavelets on the sphere S2

A recurring problem for applications (in geophysics, for instance) is the extension of wavelet analysis
to the sphere (or more general manifolds). On the discrete side, an efficient solution may be obtained
with the so-called lifting scheme (Schröder, 95), but this obviously misses the particular symmetry of the
sphere. It turns out that the general formalism developed in Section 6 yields an elegant solution to the
problem.

As usual, finite energy signals are taken in L2(S2, d;), where d; = sin θ dθ dφ denotes the standard
measure on the sphere. The natural operations on such signals are translations (on the sphere) and local
dilations. The former are given by rotations from SO(3). Dilations around the North Pole are obtained
by considering ordinary dilations in the tangent plane and lifting them to S2 by stereographic projection
from the South Pole. Thus, a dilation by a becomes a nonlinear map θ �→ θa acting on the azimuthal
angle:

tan
θa
2

= a tan
θ

2
. (8.7)

As for dilations around any other point ; ∈ S2, it suffices to bring ; to the North Pole by a rotation,
perform the dilation and go back by the inverse rotation. In this way one defines the parameter space of
the putative CWT on the sphere as XS = SO(3) · R+

∗ (Holschneider, 96). The problem is that this set
is not a group. Obviously translations and dilations do not commute. However, the only group that can
be obtained by combining only SO(3) and the dilation group R+

∗ is their direct product, which cannot
be the similitude group of the sphere.

A way out of this difficulty (Antoine, 99b) is to embed the two groups into the Lorentz group SOo(3, 1),
using the Iwasawa decomposition, SOo(3, 1) = SO(3) · R+

∗ · N , where N ∼ C is two-dimensional and
abelian. (The Lorentz group is the conformal group of the sphere S2.) The isotropy subgroup of the
North Pole is the so-called minimal parabolic subgroup of SOo(3, 1), namely P = SO(2) · R+

∗ ·N , where
SO(2) consists of rotations around the z-axis. Hence SOo(3, 1)/P � SO(3)/SO(2) � S2 and the group
SOo(3, 1) acts transitively on S2 (this action is obtained easily from the Iwasawa decomposition). The
manifold XS = SOo(3, 1)/N may then be lifted to SOo(3, 1) by the map (section) σ : XS → SOo(3, 1),
given as

σ(γ, a) = γ a, γ ∈ SO(3), a ∈ R+
∗ . (8.8)

Clearly, one is in a more general situation than the one described in Section 6 and the general machinery
developed in (Ali, 95) (Ali, 99) must be used.



There is a natural UIR of SOo(3, 1) in the space of signals L2(S2, d;) given by

(U(g)f)(;) = λ(g,;)1/2 f(g−1;). (8.9)

In this relation, λ(g,;) is the correcting factor (Radon-Nikodym derivative), that takes into account the
fact that the measure d; on S2 is not invariant under dilations. Then the construction of the CWT
starts by considering the restriction of this representation to XS, by putting US(γ, a) = U(σ(γ, a)), in
which case one gets simply

λ(a,;) = 4a2 [(a2 − 1) cos θ + (a2 + 1)]−2.

This representation US is infinite dimensional and its restriction to SO(3) decomposes into the direct
sum of all the familiar (2> + 1)-dimensional representations, > = 0, 1, . . .. It is also square integrable on
XS, but the admissibility condition is somewhat complicated. A necessary condition for the admissibility
of a wavelet ψ is that ∫∫

S2

ψ(θ, φ)
1 + cos θ

sin θ dθdφ = 0 (8.10)

(hence ψ must vanish sufficiently fast when one approaches the South Pole (θ = π), which corresponds
to the point at infinity under the stereographic projection). This is a zero mean condition, so that we
have the filtering effect, as usual. Thus, a genuine CWT on the sphere has been obtained.

An additional bonus is that this CWT has the expected Euclidean limit. By this we mean the
following. Consider instead of the unit sphere S2 a sphere S2

R of radius R and let R → ∞. Then S2
R

becomes the plane R2, the group SO(3) becomes the Euclidean group of R2, so that σ(XS) ∼ SO(3) ·R+
∗

becomes SIM(2), with corresponding transitive action, and the representation US becomes the natural
representation (7.2) of SIM(2) (in mathematical terminology, this limiting process is a group contraction).
Furthermore, admissible vectors tend exactly to admissible vectors. Therefore, the wavelet analysis on
S2 goes into the usual wavelet analysis in the plane, as developed in Section 7.

9. MOTION ANALYSIS WITH CWT

9.1. Kinematical wavelets

An important aspect of signal and image processing is the analysis of time-dependent or moving signals,
e.g., in television, and the CWT may be extended to this case too (Duval-Destin, 93). We consider
first motion on the line. Finite energy signals are taken as functions s(x, t) ∈ L2(R × R, dx dt) The
natural transformations on such a signal are translations and dilations in space and time independently,
(x, t) �→ (a1x+b1, a0t+b0). However it is more convenient to replace the two independent dilations a1, a0

by a global dilation a and a so-called speed-tuning transformation c, defined as:

s(x, t) �→ a−1s(a−1x, a−1t), a > 0;
s(x, t) �→ s(c1/2x, c−1/2t), c > 0.

(9.1)

This transformation comes from the physiological characteristics of motion perception by our visual
system. In order to be visible, fast moving objects must be wide, and narrow objects must move slowly
(for a typical example, think of the inscriptions on a departing train car).

Combining the transformation (9.1) with space and time translations, we obtain the affine group of
space-time. This group has a natural unitary irreducible representation in L2(R2, dx dt):

[U(b0, b1, a, c, ε)s](x, t) =
1
a
s

(√
c

a
(x− b1),

ε

a
√
c
(t− b0)

)
, (9.2)



where (b, τ) denote space-time translations and ε = ±1 corresponds to time-reflection (this additional
operation is needed for irreducibility). In addition, the representation U is square integrable. A wavelet
ψ is admissible iff it satisfies the condition

∫∫ |ψ̂(k, ω)|2
|k||ω| dk dω < ∞. (9.3)

From here on, everything follows exactly the general pattern. Thanks to the filtering property in a and c,
the resulting CWT (called kinematical) is efficient in detecting moving objects. The dilation parameter
a catches the size of the target, while the new parameter c adjusts the speed of the wavelet to that of
the target. Thus the spatio-temporal CWT is a tool for motion tracking. Clearly there are plenty of
applications in which such a technique might be used.

The extension of these considerations to higher dimensions is straightforward. First, in n dimensions,
the dilation and speed tuning operations (9.1) become:

x �→ a−1c1/n+1x, t �→ a−1c−n/n+1t. (9.4)

Then one has to add rotations, as usual, and follow the general pattern of Section 6.

9.2. Relativistic wavelets

The kinematical wavelets just described may not always be sufficient, depending on the type of signal to
be analyzed. One may wish to consider a specific form of movement, i.e., choose a particular relativity
group. Three examples may be of interest (we begin again with one space dimension).

(i) Galilean wavelets: here we add to the transformations discussed above the Galilei boosts, thus
getting (x, t) �→ (a1x + a0vt + b1, a0t + b0). The resulting group Gaff , called the affine Galilei group, is
quite complicated. It has a natural unitary representation in the space of finite energy signals, which
splits into the direct sum of four irreducible ones. And each of these is square integrable, so that wavelets
may be constructed in the usual way. In addition, more restricted wavelets may be constructed by taking
as parameter space various quotient spaces Gaff/H, where H is not the stability subgroup of the basic
wavelet. See (Antoine, 99d) for details.

(ii) Schrödinger wavelets: one obtains an interesting subclass of the previous one by imposing the
relation a0 = a2

1, so that the transformations leave invariant the Schrödinger (or the heat) equation.
Then, the unitary irreducible representation UG splits into the direct sum of two square integrable UIRs.
Thus, once again a CWT is at hand, which may prove useful for describing, for instance, the motion of
quantum particles on the line.

(iii) Poincaré wavelets: in order to get a CWT in the relativistic regime, it suffices to replace Galilei
transformations by Poincaré ones, while of course imposing the relation a0 = a1 to space and time
dilations. The resulting affine Poincaré group has a square integrable unitary irreducible representation,
defined on the solid future light cone (Bohnké, 91). The Poincaré wavelets might be useful, for instance,
in the presence of electromagnetic fields.

Of course, this analysis extends in a straightforward way to higher dimensions, just by adding rota-
tions.

10. OUTCOME

As a general conclusion, it is fair to say that the wavelet techniques have become an established tool
in signal and image processing, both in their CWT and DWT incarnations and their generalizations.
We want to emphasize here that the CWT and the DWT have almost opposite properties, hence their
ranges of application differ widely too. The CWT is very efficient at detecting specific features in signals



or images, such as in pattern recognition or directional filtering. On the other hand, the DWT and its
generalizations are extremely fast and economical. For instance, they yield impressive data compression
rates, which is especially useful in image processing, where huge amount of data, mostly redundant, have
to be stored and transmitted.

Both are powerful tools, and very flexible ones, thanks to their adaptive character. And both have
become a significant element in the standard toolbox of signal processing, which finds its way into an
increasing number of reference books and software codes. As a consequence, they have found applications
in many branches of physics, such as acoustics, spectroscopy, geophysics, astrophysics, fluid mechanics
(turbulence), medical imagery, atomic physics (laser-atom interaction), solid state physics (structure
calculations), . . . . Clearly wavelets are here to stay, and one should expect this trend to continue, with
an increasingly diverse spectrum of physical applications.
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VETTERLI, M.; J. KOVAČEVIĆ (1995): Wavelets and Subband Coding, Prentice Hall, Englewood
Cliffs, NJ.

WICKERHAUSER, M.V. (1994): Adapted Wavelet Analysis from Theory to Software, A.K. Peters,
Wellesley, MA.
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