Geomagnetic Dynamo Theory

Dieter Schmitt

Max Planck Institute for Solar System Research

IMPRS Solar System School Retreat Travemünde-Brodten 26-30 April 2009

Outline

- Introduction
 - Geomagnetic field
 - Dynamo hypothesis
 - Homopolar dynamo
- Basic electrodynamics
 - Pre-Maxwell theory
 - Induction equation
 - Alfven's theorem
 - Magnetic Reynolds number
 - Poloidal and toroidal fields
- Sinematic turbulent dynamos
 - Antidynamo theorems
 - Parker's helical convection

- Mean-field theory
- Mean-field dynamos
- MHD dynamos
 - Equations and parameters
 - Proudman-Taylor theorem
 - Convection in rotating sphere
 - Taylor's constraint
- Geodynamo simulations
 - A simple model
 - Interpretation
 - Advanced models
 - Reversals
- 6 Literature

Geomagnetic field

1600 Gilbert, De Magnete: "Magnus magnes ipse est globus terrestris."

(The Earth's globe itself is a great magnet.)

1838 Gauss: Mathematical description of geomagnetic field

$$B = \sum_{l,m} \mathbf{B}_{l}^{m} = -\sum_{l} \nabla \Phi_{l}^{m} = -R \sum_{l} \nabla \left(\frac{R}{r}\right)^{l+1} P_{l}^{m} (\cos \vartheta) \left(g_{l}^{m} \cos m\phi + h_{l}^{m} \sin m\phi\right)$$

sources inside Earth

I number of nodal lines, m number of azimuthal nodal lines

 $l = 1, 2, 3, \dots$ dipole, quadrupole, octupole, ...

m = 0 axisymmetry, m = 1, 2, ... non-axisymmetry

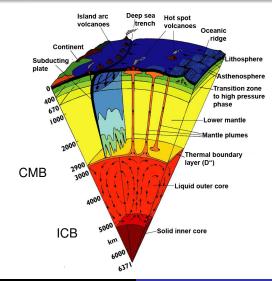
Earth: $g_1^0 \approx -0.3 \,\text{G}$, all other $|g_i^m|, |h_i^m| \le 0.05 \,\text{G}$

mainly dipolar, dipole moment $\mu = R^3 \left[(g_1^0)^2 + (g_1^1)^2 + (h_1^1)^2 \right]^{1/2} \approx 8 \cdot 10^{25} \,\mathrm{G}\,\mathrm{cm}^3$

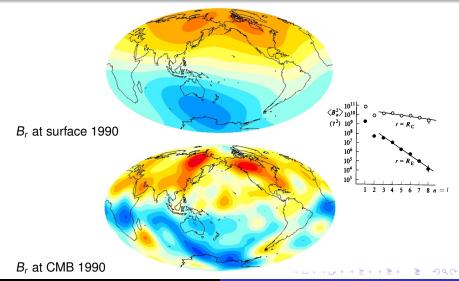
 $\tan \psi = \left[(g_1^1)^2 + (h_1^1)^2 \right]^{1/2} / g_1^0$, dipole tilt $\psi \approx 11^\circ$

dipole : quadrupole \approx 1 : 0.14 (at CMB)

Internal structure of the Earth

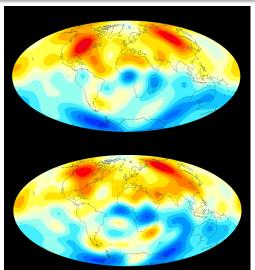


Spatial structure of geomagnetic field



Secular variation

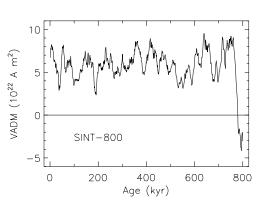
B_r at CMB 1890



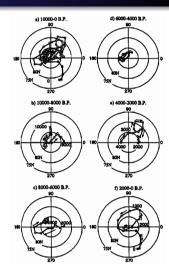
westward drift $0.18^{\circ}/yr$ $u \approx 0.3 \, \text{mm/sec}$

B_r at CMB 1990

Secular variation continued

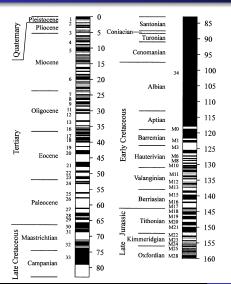


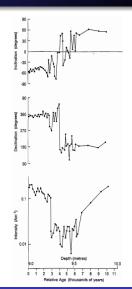
SINT-800 VADM (Guyodo and Valet 1999)



NGP (Ohno and Hamano 1992)

Polarity reversals

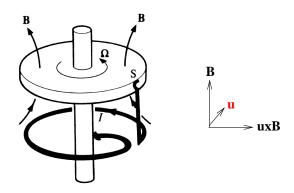




Dynamo hypothesis

- Larmor (1919): Magnetic field of Earth and Sun maintained by self-excited dynamo
- Self-excited dynamo: inducing magnetic field created by the electric current (Siemens 1867)
- Example: homopolar dynamo
- Homogeneous dynamo (no wires in Earth core or solar convection zone)
 complex motion necessary
- Kinematic (u prescribed, linear)
- Dynamic (*u* determined by forces, including Lorentz force, non-linear)

Homopolar dynamo



electromotive force $u \times B \sim$ electric current through wire loop \sim induced magnetic field reinforces applied magnetic field self-excitation if rotation $\Omega > 2\pi R/M$ is maintained

where R resistance, M inductance

Pre-Maxwell theory

Maxwell equations: cgs system, vacuum, $\mathbf{B} = \mathbf{H}$, $\mathbf{D} = \mathbf{E}$

$$c\mathbf{\nabla}\times\mathbf{B} = 4\pi\mathbf{j} + \frac{\partial\mathbf{E}}{\partial t}$$
, $c\mathbf{\nabla}\times\mathbf{E} = -\frac{\partial\mathbf{B}}{\partial t}$, $\mathbf{\nabla}\cdot\mathbf{B} = 0$, $\mathbf{\nabla}\cdot\mathbf{E} = 4\pi\lambda$

Basic assumptions of MHD:

- u ≪ c: system stationary on light travel time, no em waves
- high electrical conductivity: E determined by $\partial B/\partial t$, not by charges λ

$$c\frac{E}{L} \approx \frac{B}{T} \ \curvearrowright \ \frac{E}{B} \approx \frac{1}{c}\frac{L}{T} \approx \frac{u}{c} \ll 1 \ , \ E \ \text{plays minor role} : \frac{e_{el}}{e_m} \approx \frac{E^2}{B^2} \ll 1$$

$$\frac{\partial \textbf{\textit{E}}/\partial t}{c \textbf{\textit{V}} \times \textbf{\textit{B}}} \approx \frac{E/T}{cB/L} \approx \frac{E}{B} \frac{u}{c} \approx \frac{u^2}{c^2} \ll 1 \; , \; \text{displacement current negligible}$$

Pre-Maxwell equations:

$$c \nabla \times \mathbf{B} = 4\pi \mathbf{j} \; , \quad c \nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t} \; , \quad \nabla \cdot \mathbf{B} = 0$$

Pre-Maxwell theory continued

Pre-Maxwell equations Galilei-covariant:

$$\mathbf{E}' = \mathbf{E} + \frac{1}{c}\mathbf{u} \times \mathbf{B}$$
, $\mathbf{B}' = \mathbf{B}$, $\mathbf{j}' = \mathbf{j}$

Relation between ${\it j}$ and ${\it E}$ by Galilei-covariant Ohm's law: ${\it j}' = \sigma {\it E}'$ in resting frame of reference, σ electrical conductivity

$$\mathbf{j} = \sigma(\mathbf{E} + \frac{1}{c}\mathbf{u} \times \mathbf{B})$$

Magnetohydrokinematics:

$$c\nabla \times \mathbf{B} = 4\pi \mathbf{j}$$

$$c\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\mathbf{j} = \sigma(\mathbf{E} + \frac{1}{c}\mathbf{u} \times \mathbf{B})$$

Magnetohydrodynamics:

additionally

Equation of motion Equation of continuity Equation of state Energy equation

Induction equation

Evolution of magnetic field

$$\frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E} = -c \nabla \times \left(\frac{\mathbf{j}}{\sigma} - \frac{1}{c} \mathbf{u} \times \mathbf{B} \right) = -c \nabla \times \left(\frac{c}{4\pi\sigma} \nabla \times \mathbf{B} - \frac{1}{c} \mathbf{u} \times \mathbf{B} \right)$$
$$= \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times \left(\frac{c^2}{4\pi\sigma} \nabla \times \mathbf{B} \right) = \nabla \times (\mathbf{u} \times \mathbf{B}) - \eta \nabla \times \nabla \times \mathbf{B}$$

with $\eta = \frac{c^2}{4\pi\sigma} = {\rm const}$ magnetic diffusivity

induction, diffusion

$$\nabla \times (\mathbf{u} \times \mathbf{B}) = -\mathbf{B} \nabla \cdot \mathbf{u} + (\mathbf{B} \cdot \nabla)\mathbf{u} - (\mathbf{u} \cdot \nabla)\mathbf{B}$$
 $[+\mathbf{u} \nabla \cdot \mathbf{B} = 0]$

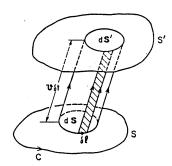
expansion/contraction, shear/stretching, advection

 $\nabla \cdot \mathbf{B} = 0$ as initial condition, conserved

Alfven's theorem

$$\mbox{Ideal conductor } \eta = 0: \quad \frac{\partial \textbf{\textit{B}}}{\partial t} = \boldsymbol{\nabla} \times (\textbf{\textit{u}} \times \textbf{\textit{B}})$$

Magnetic flux through floating surface is constant : $\frac{d}{dt} \int_F \mathbf{B} \cdot d\mathbf{F} = 0$



(Alfvén 1942)

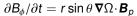
Alfven's theorem continued

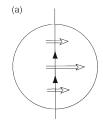
Frozen-in field lines: impression that magnetic field follows flow, but $c\mathbf{E} = -\mathbf{u} \times \mathbf{B}$ and $c\mathbf{\nabla} \times \mathbf{E} = -\partial \mathbf{B}/\partial t$

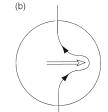
$$rac{\partial oldsymbol{\mathcal{B}}}{\partial t} = oldsymbol{
abla} imes (oldsymbol{u} imes oldsymbol{\mathcal{B}}) = -oldsymbol{\mathcal{B}} \, oldsymbol{
abla} \cdot oldsymbol{u} + (oldsymbol{\mathcal{B}} \cdot oldsymbol{
abla}) oldsymbol{u} - (oldsymbol{u} \cdot oldsymbol{
abla}) oldsymbol{\mathcal{B}}$$

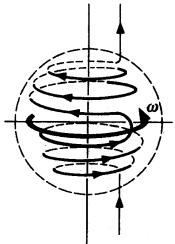
- (i) star contraction: $\overline{B} \sim R^{-2}$, $\overline{\rho} \sim R^{-3} \curvearrowright \overline{B} \sim \overline{\rho}^{2/3}$
 - Sun \sim white dwarf \sim neutron star: ρ [g cm⁻³]: 1 \sim 10⁶ \sim 10¹⁵
- (ii) stretching of flux tube: $\bigcirc \rightarrow \underline{\$} \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$ $Bd^2 = \text{const}, Id^2 = \text{const} \curvearrowright B \sim I$
- (iii) shear, differential rotation

Differential rotation









Magnetic Reynolds number

Dimensionless variables: length L, velocity u_0 , time L/u_0

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) - R_m^{-1} \, \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{B} \quad \text{with} \quad R_m = \frac{u_0 L}{\eta}$$

as combined parameter

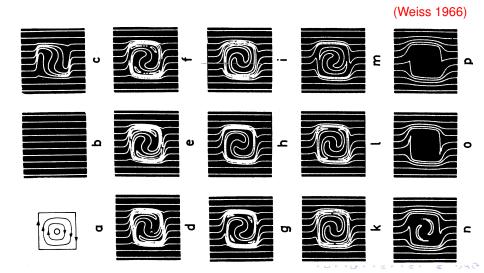
laboratorium: $R_m \ll 1$, cosmos: $R_m \gg 1$

induction for $R_m \gg 1$, diffusion for $R_m \ll 1$, e.g. for small L

example: flux expulsion from closed velocity fields

Induction equation
Alfven's theorem
Magnetic Reynolds number
Poloidal and toroidal fields

Flux expulsion



Poloidal and toroidal magnetic fields

Spherical coordinates (r, ϑ, φ)

Axisymmetric fields: $\partial/\partial\varphi=0$

$$\begin{aligned} & \boldsymbol{B}(r,\vartheta) = (B_r,B_\vartheta,B_\varphi) \\ & \boldsymbol{\nabla} \cdot \boldsymbol{B} = 0 \ \, \sim \ \, \frac{1}{r^2} \frac{\partial r^2 B_r}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial \sin \vartheta B_\vartheta}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \underbrace{\frac{\partial B_\varphi}{\partial \varphi}}_{=0} = 0 \end{aligned}$$

 $oldsymbol{B} = oldsymbol{B}_p + oldsymbol{B}_t$ poloidal and toroidal magnetic field

$$m{B}_t = (0,0,B_{arphi})$$
 satisfies $m{
abla} \cdot m{B}_t = 0$

$${m B}_{
ho}=(B_r,B_{\vartheta},0)={m
abla}{ imes}{m A}$$
 with ${m A}=(0,0,A_{arphi})$ satisfies ${m
abla}{m \cdot}{m B}_{
ho}=0$

$$\boldsymbol{B}_{p} = \frac{1}{r\sin\vartheta} \left(\frac{\partial r\sin\vartheta A_{\varphi}}{r\partial\vartheta}, -\frac{\partial r\sin\vartheta A_{\varphi}}{\partial r}, 0 \right)$$

axisymmetric magnetic field determined by the two scalars: $r \sin \vartheta A_{\varphi}$ and B_{φ}

Poloidal and toroidal magnetic fields continued

Axisymmetric fields:

$$m{j}_t = rac{m{c}}{4\pi}m{
abla}{ imes}m{B}_{m{
ho}}\;,\quad m{j}_{m{
ho}} = rac{m{c}}{4\pi}m{
abla}{ imes}m{B}_t$$

 $r \sin \vartheta A_{\varphi} = \text{const}$: field lines of poloidal field in meridional plane field lines of \boldsymbol{B}_t are circles around symmetry axis

Non-axisymmetric fields:

$$\mathbf{B} = \mathbf{B}_{p} + \mathbf{B}_{t} = \nabla \times \nabla \times (P\mathbf{r}) + \nabla \times (T\mathbf{r}) = -\nabla \times (\mathbf{r} \times \nabla P) - \mathbf{r} \times \nabla T$$

$${m r}=(r,0,0)\,,\quad P(r,\vartheta,\varphi)\quad {
m and}\quad T(r,\vartheta,\varphi)\quad {
m defining\ scalars}$$

$$\nabla \cdot \mathbf{B} = 0$$
, $\mathbf{j}_t = \frac{c}{4\pi} \nabla \times \mathbf{B}_{\rho}$, $\mathbf{j}_{\rho} = \frac{c}{4\pi} \nabla \times \mathbf{B}_t$

 $\mathbf{r} \cdot \mathbf{B}_t = 0$ field lines of the toroidal field lie on spheres, no r component

 \boldsymbol{B}_p has in general all three components

Antidynamo theorems

Cowling's theorem (Cowling 1934)

Axisymmetric magnetic fields can not be maintained by a dynamo.

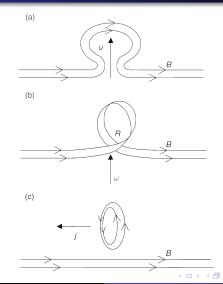
Toroidal velocity theorem (Elsasser 1947, Bullard & Gellman 1954)

A toroidal motion in a spherical conductor can not maintain a magnetic field by dynamo action.

Toroidal field theorem / Invisible dynamo theorem (Kaiser et al. 1994)

A purely toroidal magnetic field can not be maintained by a dynamo.

Parker's helical convection



Mean-field theory

Statistical consideration of turbulent helical convection on mean magnetic field (Steenbeck, Krause and Rädler 1966)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \eta \nabla \times \nabla \times \mathbf{B}$$

$$u = \overline{u} + u'$$
, $B = \overline{B} + B'$ Reynolds rules for averages

$$\frac{\partial \overline{\boldsymbol{B}}}{\partial t} = \nabla \times (\overline{\boldsymbol{u}} \times \overline{\boldsymbol{B}} + \boldsymbol{\mathcal{E}}) - \eta \nabla \times \nabla \times \overline{\boldsymbol{B}}$$

$$\mathcal{E} = \overline{\mathbf{u}' \times \mathbf{B}'}$$
 mean electromotive force

$$\frac{\partial \boldsymbol{B}'}{\partial t} = \nabla \times (\overline{\boldsymbol{u}} \times \boldsymbol{B}' + \boldsymbol{u}' \times \overline{\boldsymbol{B}} + \boldsymbol{\mathcal{G}}) - \eta \nabla \times \nabla \times \boldsymbol{B}'$$

$$G = u' \times B' - \overline{u' \times B'}$$
 usually neglected, FOSA = SOCA

 ${m B}'$ linear, homogeneous functional of ${m \overline{B}}$

approximation of scale separation: ${m B}'$ depends on ${m B}$ only in small surrounding

Taylor expansion:
$$(\overline{\mathbf{u}' \times \mathbf{B}'})_i = \alpha_{ij} \overline{B}_j + \beta_{ijk} \partial \overline{B}_k / \partial x_j + \dots$$

Mean-field theory continued

$$\left(\overline{\boldsymbol{u}'\times\boldsymbol{B}'}\right)_{i}=\alpha_{ij}\overline{B}_{j}+\beta_{ijk}\partial\overline{B}_{k}/\partial x_{j}+\ldots$$

 α_{ij} and β_{ijk} depend on $\textbf{\textit{u}}'$ and are, in general, tensors

homogeneous, isotropic \mathbf{u}' : $\alpha_{ij} = \alpha \delta_{ij}$, $\beta_{ijk} = -\beta \varepsilon_{ijk}$ then

$$\overline{\mathbf{u}' \times \mathbf{B}'} = \alpha \overline{\mathbf{B}} - \beta \nabla \times \overline{\mathbf{B}}$$

$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \nabla \times (\overline{\mathbf{u}} \times \overline{\mathbf{B}} + \alpha \overline{\mathbf{B}}) - (\eta + \beta) \nabla \times \nabla \times \overline{\mathbf{B}}$$

Two effects:

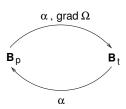
- - $\alpha = -\frac{1}{3} \overline{{\it u}' \cdot \nabla \times {\it u}'} \tau^* = -\frac{1}{3} \overline{H} \tau^*$ where H helicity, τ^* correlation time
- (2) turbulent diffusivity: $\beta = \frac{1}{3}u'^2\tau^* \gg \eta$, $\eta + \beta = \beta = \eta_T$

Mean-field dynamos

Dynamo equation:
$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \nabla \times (\overline{\mathbf{u}} \times \overline{\mathbf{B}} + \alpha \overline{\mathbf{B}} - \eta_T \nabla \times \overline{\mathbf{B}})$$

- spherical coordinates, axisymmetry
- $\overline{\mathbf{u}} = (0, 0, \Omega(r, \vartheta)r \sin \vartheta)$
- $\mathbf{B} = (0, 0, B(r, \vartheta, t)) + \nabla \times (0, 0, A(r, \vartheta, t))$

$$\begin{split} \frac{\partial B}{\partial t} &= r \sin \vartheta (\nabla \times \mathbf{A}) \cdot \nabla \Omega - \alpha \nabla_1^2 A + \eta_T \nabla_1^2 B \\ \frac{\partial A}{\partial t} &= \alpha B + \eta_T \nabla_1^2 A \quad \text{with} \quad \nabla_1^2 = \nabla^2 - (r \sin \vartheta)^{-2} \end{split}$$



rigid rotation has no effect

no dynamo if
$$\alpha = 0$$

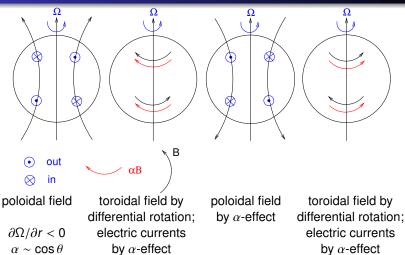
$$\frac{\alpha - \mathsf{term}}{\nabla \Omega - \mathsf{term}} \approx \frac{\alpha_0}{|\nabla \Omega| L}$$

$$\begin{cases} \gg 1 & \alpha^2 - \text{dynamo with dynamo number } R_\alpha^2 \\ \sim 1 & \alpha^2 \Omega - \text{dynamo} \\ \ll 1 & \alpha \Omega - \text{dynamo with dynamo number } R_\alpha R_\Omega \end{cases}$$

$$\sim$$
 1 $\alpha^2\Omega$ -dynamo

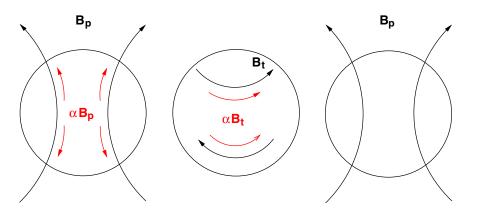
$$\ll$$
 1 $\alpha\Omega$ -dynamo with dynamo number R_{α} R_{Ω}

Sketch of an $\alpha\Omega$ dynamo



periodically alternating field, here antisymmetric with respect to equator

Sketch of an α^2 dynamo



stationary field, here antisymmetric with respect to equator

MHD equations of rotating fluids in non-dimensional form

Navier-Stokes equation including Coriolis and Lorentz forces

$$E\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \nabla^2 \mathbf{u}\right) + 2\hat{\mathbf{z}} \times \mathbf{u} + \nabla \Pi = \frac{Ra E}{Pr} \frac{\mathbf{r}}{r_0} T + \frac{1}{Pm} (\nabla \times \mathbf{B}) \times \mathbf{B}$$
Inertia Viscosity Coriolis Buoyancy Lorentz

Induction equation

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \frac{1}{Pm} \nabla \times \nabla \times \mathbf{B}$$
Induction Diffusion

Energy equation

$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} T = \frac{1}{Pr} \boldsymbol{\nabla}^2 T + Q$$

Incompressibility and divergence-free magnetic field

$$\nabla \cdot \boldsymbol{u} = 0$$
 , $\nabla \cdot \boldsymbol{B} = 0$

$$\mathbf{A} \cdot \mathbf{B} = 0$$

Non-dimensional parameters

Control	parameters	(Input)
---------	------------	---------

Parameter	Definition	Force balance	Model value	Earth value
Rayleigh number	$Ra = \alpha g_0 \Delta T d / \nu \kappa$	buoyancy/diffusivity	1 - 50 <i>Ra</i> _{crit}	≫ Ra _{crit}
Ekman number	$E = v/\Omega d^2$	viscosity/Coriolis	$10^{-6} - 10^{-4}$	10^{-14}
Prandtl number	$Pr = v/\kappa$	viscosity/thermal diff.	$2 \cdot 10^{-2} - 10^3$	0.1 - 1
Magnetic Prandtl	$Pm = v/\eta$	viscosity/magn. diff.	$10^{-1} - 10^3$	$10^{-6} - 10^{-5}$

Diagnostic parameters (Output)

Parameter	Definition	Force balance	Model value	Earth value
Elsasser number	$\Lambda = B^2/\mu\rho\eta\Omega$	Lorentz/Coriolis	0.1 - 100	0.1 - 10
Reynolds number	Re = ud/v	inertia/viscosity	< 500	$10^8 - 10^9$
Magnetic Reynolds	$Rm = ud/\eta$	induction/magn. diff.	$50 - 10^3$	$10^2 - 10^3$
Rossby number	$Ro = u/\Omega d$	inertia/Coriolis	$3 \cdot 10^{-4} - 10^{-2}$	$10^{-7} - 10^{-6}$

Earth core values: $d \approx 2 \cdot 10^5 \text{ m}$, $u \approx 2 \cdot 10^{-4} \text{ m s}^{-1}$, $v \approx 10^{-6} \text{ m}^2 \text{s}^{-1}$

Proudman-Taylor theorem

Non-magnetic hydrodynamics in rapidly rotating system

 $E \ll 1$, $Ro \ll 1$: viscosity and inertia small

balance between Coriolis force and pressure gradient

$$-\nabla p = 2\rho \mathbf{\Omega} \times \mathbf{u} \;, \quad \nabla \times : \quad (\mathbf{\Omega} \cdot \nabla) \mathbf{u} = 0$$

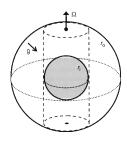
 $\frac{\partial \mathbf{u}}{\partial z} = 0$ motion independent along axis of rotation, geostrophic motion

(Proudman 1916, Taylor 1921)

Ekman layer:

At fixed boundary ${\bf u}=0$, violation of P.-T. theorem necessary for motion close to boundary allow viscous stresses $v \nabla^2 {\bf u}$ for gradients of ${\bf u}$ in z-direction Ekman layer of thickness $\delta_I \sim E^{1/2} L \sim 0.2$ m for Earth core

Convection in rotating spherical shell



inside tangent cylinder: $g \parallel \Omega$:

Coriolis force opposes convection outside tangent cylinder:

P.-T. theorem leads to columnar convection cells $\exp(im\varphi - \omega t)$ dependence at onset of convection, 2m columns which drift in φ -direction

inclined outer boundary violates Proudman-Taylor theorem

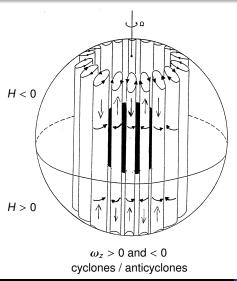
 \sim columns close to tangent cylinder around inner core

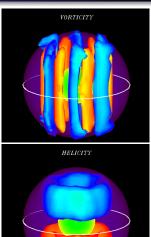
inclined boundaries, Ekman pumping and inhomogeneous thermal buoyancy lead to secondary circulation along convection columns:

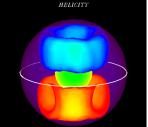
poleward in columns with ω_z < 0, equatorward in columns with ω_z > 0

¬ negative helicity north of the equator and positive one south

Convection in rotating spherical shell continued







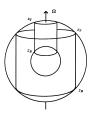
Taylor's constraint

$$2\rho \mathbf{\Omega} \times \mathbf{u} = -\nabla p + \rho \mathbf{g} + (\nabla \times \mathbf{B}) \times \mathbf{B}/4\pi$$
 magnetostrophic regime $\nabla \cdot \mathbf{u} = 0$, $\rho = \mathrm{const}$; $\mathbf{\Omega} = \omega_0 \mathbf{e}_z$

Consider φ -component and integrate over cylindrical surface C(s) $\partial p/\partial \varphi = 0$ after integration over φ , **g** in meridional plane

$$2\rho\Omega\underbrace{\int_{C(s)} \mathbf{u} \cdot d\mathbf{s}}_{=0} = \frac{1}{4\pi} \int_{C(s)} ((\mathbf{\nabla} \times \mathbf{B}) \times \mathbf{B})_{\varphi} ds$$

$$\int_{C(s)} \left((\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} \right)_{\varphi} ds = 0 \quad \text{(Taylor 1963)}$$



net torque by Lorentz force on any cylinder $\parallel \Omega$ vanishes

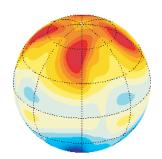
B not necessarily small, but positive and negative parts of the integrand cancelling each other out

violation by viscosity in Ekman boundary layers

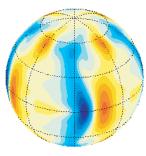
torsional oscillations around Taylor state

Benchmark dynamo

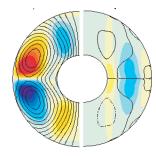
$$Ra = 10^5 = 1.8 \, Ra_{crit} \,, \quad E = 10^{-3} \,, \quad Pr = 1 \,, \quad Pm = 5$$



radial magnetic field at outer radius



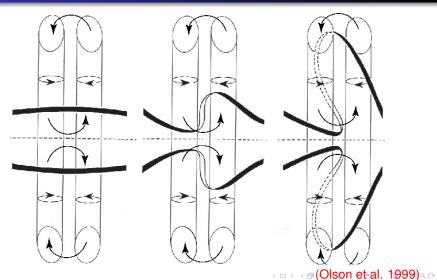
radial velocity field at $r = 0.83r_0$



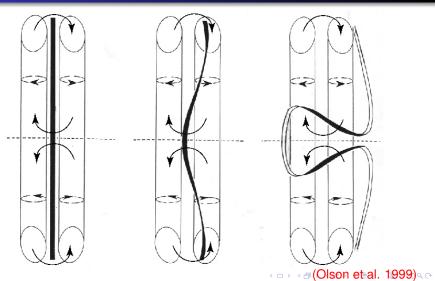
axisymmetric axisymmetric magnetic field flow

(Christensen et al. 2001)

Conversion of toroidal field into poloidal field



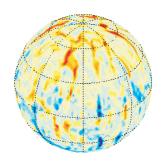
Generation of toroidal field from poloidal field



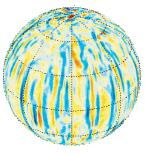
Field line bundle in the benchmark dynamo

Strongly driven dynamo model

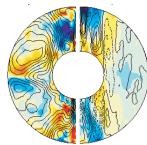
$$Ra = 1.2 \times 10^8 = 42 Ra_{crit}$$
, $E = 3 \times 10^{-5}$, $Pr = 1$, $Pm = 2.5$



radial magnetic field at outer radius



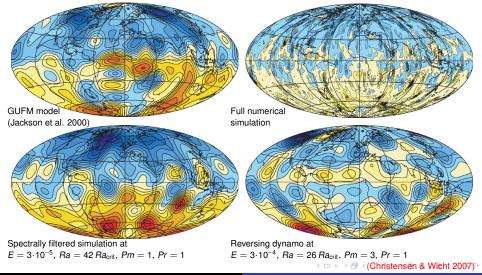
radial velocity field at $r = 0.93r_0$



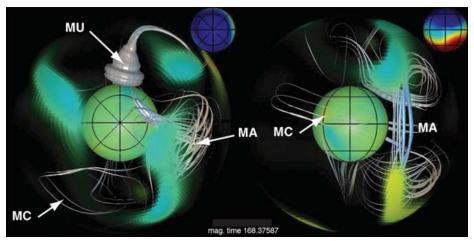
axisymmetric axisymmetric magnetic field flow

(Christensen et al. 2001)

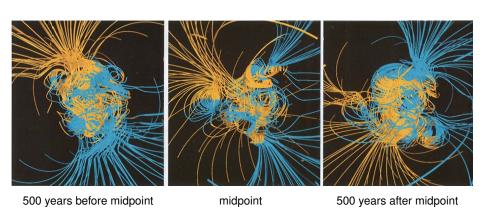
Comparison of the radial magnetic field at the CMB



Dynamical Magnetic Field Line Imaging / Movie 2

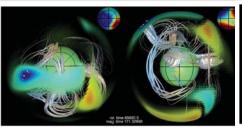


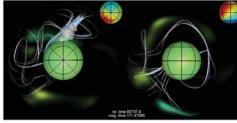
Reversals



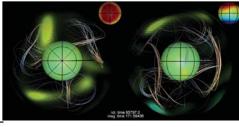
(Glatzmaier and Roberts 1995)

Reversals continued

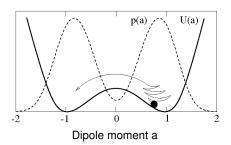


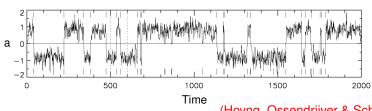






The geodynamo as a bistable oscillator





Literature

- P. H. Roberts, An introduction to magnetohydrodynamics, Longmans, 1967
- H. Greenspan, The theory of rotating fluids, Cambridge, 1968
- H. K. Moffatt, Magnetic field generation in electrically conducting fluids, Cambridge, 1978
- E. N. Parker, Cosmic magnetic fields, Clarendon, 1979
- F. Krause, K.-H. Rädler, Mean-field electrodynamics and dynamo theory, Pergamon, 1980
- F. Krause, K.-H. Rädler, G. Rüdiger (Eds.), The cosmic dynamo, IAU Symp. 157, Kluwer, 1993
- M. R. E. Proctor and A. D. Gilbert (Eds.), Lectures on solar and planetary dynamos, Cambridge, 1994
- D. R. Fearn, Hydromagnetic flows in planetary cores, Rep. Prog. Phys., 61, 175, 1998

Literature continued

- Treatise on geophysics, Vol. 8, Core dynamics, P. Olson (Ed.), Elsevier, 2007
 - P. H. Roberts, Theory of the geodynamo
 - C. A. Jones, Thermal and compositional convection in the outer core
 - U. R. Christensen and J. Wicht, Numerical dynamo simulations
 - G. A. Glatzmaier and R. S. Coe, Magnetic polarity reversals in the core
- M. Ossendrijver, The solar dynamo, Astron. Astrophys. Rev., 11, 287, 2003
- P. Charbonneau, Dynamo models of the solar cycle, Living Rev. Solar Phys., 2, 2005